A secure messaging application using steganography and AES encryption a dual-layer secure messaging system
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.12Keywords:
Steganography, Secure messaging, Data hiding, LSB method, AES encryption, Privacy, Hidden communication.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research involves the development of a secure messaging application with the capability to send messages inside images oraudiofiles using the practice called steganography. In this application, a person can secretly communicate in such a way that nooneisawareoftheexistenceof the hidden message. The application uses the Least Significant Bit (LSB) method to hide the messages while encrypting the messages. To provide greater security, AES encryption is used before hiding the messages, thus forcing both sender and receiver to decrypt the message using a shared key. This two-layer approach of steganography and encryption creates this application highly appropriate for people with communication controls or monitored at some level because it gives confidentiality for the message privacy.Abstract
How to Cite
Downloads
Similar Articles
- Sanskriti Gandhi, Usha Asnani, Srivalli Natarajan, Chinmay Rao, Richa Agrawal, Evaluation of stability of fixation using conventional miniplate osteosynthesis in comminuted and non-comminuted Le Fort I, II, III fractures – A dynamic finite element analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. Akila, Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Shaheen Fatima, Priyanka Suryavanshi, Urban slum children in Lucknow: Exploring nutritional status and complementary feeding practices , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- A. R. Jasmine Begum, M. Parveen, S. Latha, IoT based home automation with energy management , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- G Vanitha, M Kasthuri, A robust feature selection approach for high-dimensional medical data classification using enhanced correlation attribute evaluation , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Komal Raichura, Asha L. Bavarava, Redefining Classroom Dynamics: AI Tools and the Future of English Language Pedagogy , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.

