Energy efficient techniques for iot application on resource aware fog computing paradigm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.11Keywords:
Resource aware, IoT application, fog computing paradigm, latency, network, Energy Efficient TechniqueDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
During the rapid emergence of the IoT environment, computing is widespread in all domains and undergoes tiny changes on an everyday basis that lead to momentous shifts in the development and deployment of applications. Network infrastructure can be utilized efficiently in large volumes of data by deploying the applications. IoT applications constitute different types of modules that run together with interdependency and run on the cloud conventionally in the data center. The research study proposes a framework for a resource-aware fog computing paradigm using a Module mapping algorithm, lower bound algorithm, Application Module and Network Node and resource-aware algorithm. Fog computing is employed for deploying IoT applications that are sensitive to latency. The incoming data is processed by fog computing by utilizing the available resources by reducing the amount of data sent to the server. The optimum performance can be achieved by connecting the appropriate sensor node to the parent node. The proposed algorithm reduces energy consumption and latency. Comparative analysis is performed for the proposed and conventional fog computing paradigm.Abstract
How to Cite
Downloads
Similar Articles
- S. Kumar, M. Santhanalakshmi , R. Navaneethakrishnan, Content addressable memory for energy efficient computing applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. Hepsibah Kenneth, E. George Dharma Prakash Raj, Priority based parallel processing multi user multi task scheduling algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R. Porselvi, D. Kanchana, Beulah Jackson, L. Vigneash, Dynamic resource management for 6G vehicular networks: CORA-6G offloading and allocation strategies , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Sandanasamy, P. Joseph Charles, Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Enhanced Block Chain Financial Transaction Security Using Chain Link Smart Agreement based Secure Elliptic Curve Cryptography , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Trust-based symmetric game theory for physical layer security in wi-fi communication , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper

