ECE cipher: Enhanced convergent encryption for securing and deduplicating public cloud data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.10Keywords:
Cloud computing, Cloud Security, deduplication, Convergent Encryption, Data Confidentiality, Block Cipher EncryptionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cloud computing offers scalable and cost-effective storage solutions, but concerns over data security, unauthorized access, and storage inefficiencies remain significant. Data deduplication is crucial in reducing storage costs by eliminating redundant copies, yet traditional encryption methods hinder deduplication by generating unique ciphertexts for identical plaintexts, leading to increased storage requirements. To address these challenges, this paper presents ECEcipher, an advanced symmetric block cipher encryption technique that integrates convergent encryption for secure deduplication while ensuring strong data security. It uses a 196-bit encryption key, generated from the plaintext data, and applies substitution and permutation operations for enhanced security. Unlike conventional encryption, ECEcipher dynamically determines encryption rounds, making it harder to break. Performance evaluation shows ECEcipher outperforms DES and Blowfish in encryption speed and efficiency, making it ideal for real-time cloud applications. Additionally, ECEcipher supports deduplication without compromising security, ensuring optimized storage utilization. Security analysis using the ABC Universal Hackman Tool confirms higher resistance to brute-force and dictionary attacks.Abstract
How to Cite
Downloads
Similar Articles
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Energy efficient techniques for iot application on resource aware fog computing paradigm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Priscilla I, Jayasimman Lawrence, Enhanced Symmetric Cryptography Technique (ESCTGPU) for Secure Communication between the IoT Gateway and the public Cloud Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

