
Abstract
Cloud computing offers scalable and cost-effective storage solutions, but concerns over data security, unauthorized access, and storage 
inefficiencies remain significant. Data deduplication is crucial in reducing storage costs by eliminating redundant copies, yet traditional 
encryption methods hinder deduplication by generating unique ciphertexts for identical plaintexts, leading to increased storage 
requirements. To address these challenges, this paper presents ECEcipher, an advanced symmetric block cipher encryption technique 
that integrates convergent encryption for secure deduplication while ensuring strong data security. It uses a 196-bit encryption key, 
generated from the plaintext data, and applies substitution and permutation operations for enhanced security. Unlike conventional 
encryption, ECEcipher dynamically determines encryption rounds, making it harder to break. Performance evaluation shows ECEcipher 
outperforms DES and Blowfish in encryption speed and efficiency, making it ideal for real-time cloud applications. Additionally, ECEcipher 
supports deduplication without compromising security, ensuring optimized storage utilization. Security analysis using the ABC Universal 
Hackman tool confirms higher resistance to brute-force and dictionary attacks. 
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Introduction
Cloud computing offers a robust and scalable environment 
for data storage, allowing users to store large volumes of 
information efficiently. Organizations, particularly those 
handling massive datasets, benefit from cloud storage by 
reducing the need for costly on-premise infrastructure 
(Arockiam L. et al., 2013). Enterprises, especially small-scale 
businesses, can optimize storage costs by renting cloud 
storage resources instead of investing in expensive servers. 
The scalability of cloud storage enables users to adjust 
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storage capacity dynamically, ensuring flexibility and cost 
efficiency. One of the major advantages of cloud storage is 
its reliability, as data stored in the cloud can be retrieved 
on demand. Additionally, cloud storage protects data from 
physical damage caused by natural disasters, ensuring 
business continuity. Storage can be either dedicated or 
shared, with shared storage options available at a minimal 
cost in public cloud environments. 

Despite these benefits, cloud storage faces a significant 
challenge—data duplication. Data deduplication is a 
common practice in cloud storage that aims to eliminate 
redundant copies of files stored by multiple users (Sabeerath 
K., et al., 2024a). Since many users store identical files, 
cloud service providers (CSPs) implement deduplication 
techniques to minimize storage space and improve 
efficiency. Deduplication helps reduce storage costs and 
bandwidth consumption by ensuring that only a single 
instance of a file is stored, while duplicate copies are linked 
to the original data. However, this process poses a serious 
security risk, as traditional encryption methods prevent 
deduplication by generating unique ciphertexts for identical 
plaintexts. If different users encrypt the same file with 
different keys, the cloud system treats them as separate 
files, increasing storage redundancy.

To address this issue, convergent encryption (CE) has 
emerged as an effective solution for enabling secure 
deduplication in cloud storage (Selvaraj R. et al., 2023a). 
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Convergent encryption ensures that identical plaintexts 
produce the same ciphertext, allowing the cloud system 
to detect duplicate data and store only one encrypted 
version of the file, thereby optimizing storage efficiency. In 
this approach, a cryptographic key is derived from the data 
itself, meaning that only users who possess the original 
file can generate the same encryption key to decrypt 
it. This mechanism allows cloud storage providers to 
perform deduplication while ensuring data confidentiality 
(Sabeerath K., et al., 2024b). However, convergent encryption 
also presents security vulnerabilities, particularly against 
brute-force and dictionary attacks, where an attacker can 
precompute ciphertexts for commonly stored files and 
attempt to match encrypted data with known plaintexts. 
This creates a trade-off between storage efficiency and data 
security (Selvaraj R. et al., 2023b). To strengthen security, 
advanced encryption methods must integrate robust 
cryptographic techniques while maintaining support for 
deduplication.

To enhance cloud data security, this paper introduces 
ECEcipher, an advanced encryption technique designed to 
fortify data protection in cloud environments. ECEcipher is 
a symmetric block cipher convergent encryption method 
specifically developed to secure data stored in public cloud 
infrastructures. The encryption process is offered as a cloud-
based service, with the required encryption keys retrieved 
from a dedicated cloud key management system. The 
proposed encryption approach employs substitution and 
permutation techniques to ensure strong data protection. 
It processes 64-bit plaintext and encrypts it using a 196-bit 
encryption key, significantly enhancing data confidentiality. 
By integrating advanced encryption mechanisms, ECEcipher 
aims to address the limitations of traditional encryption 
methods, ensuring both high security and storage efficiency. 

Related Work
Cloud storage faces challenges in data security and privacy, 
particularly in ensuring confidentiality and trust in service 
providers. To address this, Arockiam et al. (2013) propose a 
hybrid symmetric encryption algorithm to protect cloud-
stored data from unauthorized access. Their method 
enhances security and storage efficiency by leveraging 
symmetric encryption techniques.  The proposed method 
encrypts data before transmission and storage, reducing 
risks from external threats and insider attacks. Integrating 
access control measures further minimizes unauthorized 
data exposure. The study analyzes the encryption and 
decryption processes, demonstrating improved cloud 
security. Their findings confirm that this technique offers 
a robust, efficient solution for protecting cloud-based 
information while ensuring optimal performance.

Ensuring cloud data security is a major challenge, 
requiring multi-layered protection to prevent unauthorized 

access. To enhance confidentiality, Arockiam et al. (2014) 
propose a dual-layered approach combining encryption 
and obfuscation. While encryption secures data, obfuscation 
makes it unreadable to attackers, ensuring stronger 
protection. Even if encrypted data is accessed, deciphering 
it remains extremely difficult without authorization. The 
authors argue that encryption alone has vulnerabilities, 
making obfuscation essential for better resilience against 
cryptographic attacks. Their strategy effectively addresses 
growing concerns over cloud data privacy, offering a 
comprehensive security solution. The authors confirm that 
even if intercepted, encrypted data remains inaccessible, 
reinforcing confidentiality and integrity in cloud storage 
environments.

Ensuring data confidentiality in cloud storage is 
challenging, especially with third-party providers managing 
data. To address this, da Rocha et al. (2020) propose a client-
side encryption solution using Intel’s SGX within a trusted 
execution environment (TEE). This method ensures that data 
is encrypted before uploading, preventing unauthorized 
access, even if the cloud provider is compromised. By 
integrating their approach with Cryptomator, a widely 
used client-side encryption tool, they demonstrate its 
feasibility and effectiveness in enhancing cloud security. 
The SGX-based encryption strengthens confidentiality and 
access control, protecting sensitive data from breaches. 
The paper emphasizes the importance of trusted execution 
environments in modern cloud security, offering a scalable 
and practical solution that maintains both security and 
usability. 

Securing smart system data in cloud environments 
is a growing challenge, requiring robust encryption 
mechanisms. To address this, Qureshi et al. (2022) conducted 
a comprehensive survey of encryption techniques for cloud-
based smart systems. Their study provides a comparative 
analysis of various methods, highlighting strengths, 
limitations, and applications. The authors use graphical 
workflows to simplify encryption processes, helping 
researchers and practitioners evaluate effective security 
strategies. By consolidating encryption techniques, the 
survey serves as a valuable reference for enhancing cloud 
security. The paper emphasizes the need for balancing 
security, efficiency, and computational cost, ensuring 
optimal data protection in cloud infrastructures.

Securing cloud-stored data is increasingly important 
due to rising cyber threats and unauthorized access risks. To 
address this, Aruljothi Rajasekaran et al. (2024) introduce the 
enhanced cloud data security (ECDS) technique, designed 
to strengthen data protection in cloud infrastructures. 
ECDS focuses on mitigating cloud storage vulnerabilities 
by implementing advanced security measures that ensure 
confidentiality and integrity. While specific technical 
details are not fully outlined, the authors emphasize robust 
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encryption protocols and access control mechanisms to 
safeguard sensitive cloud data. The authors stress the need 
for enhanced security frameworks to prevent unauthorized 
access, breaches, and insider threats. By integrating 
strong encryption techniques, ECDS enhances cloud data 
confidentiality, making it more resistant to cyberattacks. 
The study contributes to ongoing cloud security research, 
providing a framework for secure data storage, privacy 
protection, and reliable access control in modern cloud 
environments.

Ensuring cloud data security is crucial due to the risks 
of unauthorized access and data breaches. Aslam et al. 
(2024) propose a hybrid encryption model that combines 
symmetric encryption for speed and asymmetric encryption 
for secure key management, enhancing data confidentiality 
and efficiency. Their study evaluates encryption and 
decryption times, demonstrating improved security with 
minimal performance impact. Additionally, the research 
highlights user education as vital in enhancing cloud 
security, recommending training programs on encryption 
best practices. Further analysis confirms the model’s 
resistance to brute-force and man-in-the-middle attacks. 
Aslam et al. (2024) conclude that their approach provides 
a secure and efficient encryption framework, ensuring 
strong cloud data protection while maintaining optimal 
performance for modern cloud applications. Table 1 shows 
a comparison of the related works discussed in this paper.

Methodology
The proposed ECEcipher is a symmetric block convergent 
encryption technique designed to enhance data security in 
cloud storage. It employs a secret key for both encryption 
and decryption, ensuring that only authorized users with the 
correct key can access the original data. Unlike traditional 
symmetric encryption methods that use a fixed number 
of processing rounds for all plaintext inputs, ECEcipher 

introduces a dynamic round selection mechanism to 
strengthen security.

Key Features of ECEcipher

Dynamic Encryption Rounds
Conventional encryption techniques use a predetermined 
number of encryption and decryption rounds, making them 
susceptible to cryptanalysis. Attackers can analyze patterns 
in ciphertext to infer plaintext. In contrast, ECEcipher 
dynamically determines the number of encryption and 
decryption rounds based on the key, ensuring greater 
unpredictability and resistance to attacks.

Enhanced Key Structure
The encryption technique employs a 200-bit convergent 
key, which is later transformed into a 196-bit encryption key 
through a systematic process:
•	 The original 200-bit key is generated from the plaintext 

data.
•	 The last 8 bits of the key are split into two 4-bit segments.
•	 The first 4-bit segment is discarded, leaving a 196-bit 

final key for encryption.
•	 The remaining 4-bit segment (Subkey1) determines the 

number of encryption rounds for a given plaintext.
•	 The same process is followed during decryption to 

maintain consistency.

Key Generation Mechanism
The encryption key consists of 25 character length digest 
value from the plaintext, each 8-bit in length, making it 
highly secure and difficult to predict. The dynamic nature 
of key-based round selection further complicates brute-
force attacks.

Proposed ECEcipher
The proposed ECEcipher convergent encryption method 
processes 64-bit plaintext as input and produces 64-bit 

Table 1: Comparison of related works

Reference Encryption type Security focus Methodology Performance impact Application

Arockiam et al. (2013) Hybrid symmetric 
encryption

Data confidentiality & 
efficiency

Symmetric encryption 
for secure storage

Efficient & secure Cloud data storage

Arockiam et al. (2014) Encryption & 
obfuscation

Multi-layered security Combining encryption 
& obfuscation

Improved security, 
slight overhead

Cloud privacy 
protection

da Rocha et al. (2020) Client-side 
encryption (sgx)

Prevent unauthorized 
access

SGX-based 
Trusted Execution 
Environment

Minimal performance 
loss

Securing cloud-
stored data

Qureshi et al. (2022) Survey on various 
techniques

Comparative study of 
encryption

Comparative analysis 
& graphical workflows

Dependent on 
technique used

General cloud-
based encryption

Aruljothi Rajasekaran 
et al. (2024)

ECDS - advanced 
encryption

Cloud data protection Enhanced security 
frameworks

Improved security & 
control

Cloud infrastructure 
security

Aslam et al. (2024) Hybrid Encryption 
(Symmetric & 
Asymmetric)

Cloud security with 
user awareness

Combining symmetric 
& asymmetric 
encryption

Strong security 
without major 
performance loss

Cloud data 
confidentiality
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ciphertext as output. Figure 1 shows the block diagram 
of ECEcipher. The encryption process integrates two 
fundamental cryptographic techniques: substitution and 
transposition. Unlike traditional encryption methods with a 
fixed number of rounds, ECEcipher dynamically determines 
the number of encryption rounds based on the key, 
enhancing security against cryptanalysis.

Dynamic Round Execution
•	 The number of encryption rounds is not predetermined 

but is dynamically derived from Subkey1 of the 
encryption key.

•	 This dynamic variation ensures that different plaintext 
inputs undergo varying encryption rounds, making it 
difficult for attackers to infer patterns.

Key Structure and Subkey Functions
The 196-bit encryption key is divided into four subkeys, each 
playing a distinct role in the encryption process:

•	 Subkey1
Determines the number of encryption rounds for a given 
plaintext.

•	 Subkey2
Controls the bit permutation (transposition), ensuring a 
rearrangement of bits before further processing.

•	 Subkey3
A 64-bit key, which is further divided into two 32-bit 
segments for additional cryptographic operations.

•	 Subkey4
After all rounds, a 64-bit output is derived. It is XoRed with 
the fourth subkey.

Step-by-Step Encryption Process

•	 Bit Permutation (Transposition)
•	 The 64-bit plaintext undergoes permutation based 

on Subkey2, effectively shuffling the bit positions to 
introduce diffusion.

•	 Splitting of Data
•	 After permutation, the 64-bit data is divided into 

two 32-bit halves.
•	 Similarly, Subkey3 (64-bit) is also divided into two 

32-bit subkeys.

•	 XOR Operation
•	 Each 32-bit half of plaintext is XoRed with the 

corresponding 32-bit subkey from Subkey3.

•	 Bit Swapping
•	 The resulting two 32-bit halves are swapped to 

enhance confusion, making it difficult to trace 

Figure 1: ECEcipher block diagram
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patterns in the encryption process.

•	 Merging and Round Completion
•	 The swapped halves are merged back into a 64-bit 

block.
•	 This completes one round of encryption.
•	 The process repeats for the dynamically determined 

number of rounds.
By implementing substitution, permutation, XOR 

operations, and dynamic round selection, ECEcipher 
significantly strengthens encryption security, making it 
resistant to cryptanalysis attacks. The decryption process 
follows the same logic in reverse, ensuring accurate retrieval 
of the original plaintext.

 The encryption process continues for the number of 
rounds dynamically determined by Subkey1. Each round 
follows the structured sequence of permutation, XOR 
operations, swapping, and merging to enhance data 
security.

Once all encryption rounds are completed:
•	 The final 64-bit processed data undergoes an XOR 

operation with Subkey4.
•	 This final XOR operation further obfuscates the data, 

strengthening resistance against cryptanalysis.
•	 The resulting 64-bit output is the ciphertext, which 

is securely stored or transmitted.
By incorporating dynamic round execution and multi-

layered encryption transformations, ECEcipher ensures 
robust confidentiality, making it significantly more secure 
than conventional block cipher techniques.

ECEcipher Encryption Procedure
The ECEcipher encryption and decryption process follows a 
structured set of steps to ensure secure data transformation. 
Below is a detailed breakdown of the encryption procedure:

Procedure for ECEcipher Encryption

•	 Input Data Acquisition
•	 The user’s data is taken as input plaintext (PTEXT).

•	 Binary Conversion
•	 Convert the plaintext (PTEXT) into its binary 

representation.

•	 Block Division
•	 The input plaintext is divided into 64-bit blocks, as 

ECEcipher processes 64-bit data blocks at a time.

•	 Key Retrieval
•	 Obtain a 196-bit convergent encryption key (KEY) 

from the plaintext.

•	 Round Determination
•	 Extract the last four bits from the 196-bit KEY to 

determine the number of encryption rounds.

•	 Matrix Formation
•	 Convert the 64-bit plaintext block into an 8×8 

matrix (MAT).

•	 Subkey Extraction - SKEY2
•	 Retrieve the first 64-bit subkey (SKEY2) from the 

196-bit KEY.

•	 Decimal Conversion
•	 Convert SKEY2 (64-bit) into eight decimal values.

•	 Column Labeling
•	 Assign these eight decimal values as labels to the 

top of each column in the matrix.

•	 Column-Based Bit Rearrangement
•	 Read bits column-wise based on the ascending 

order of the decimal values assigned to the columns.

•	 Splitting into Two Halves
•	 The 64-bit rearranged data is split into two 32-bit 

halves by separating even and odd positional bits.

•	 Subkey Extraction - SKEY3
•	 Retrieve the second 64-bit subkey (SKEY3) from the 

196-bit KEY.

•	 Splitting SKEY3
•	 Divide SKEY3 into two 32-bit subkeys.

•	 XOR Operation
•	 Perform the XOR operation between the two 32-bit 

plaintext halves and their corresponding 32-bit 
subkeys.

•	 Merging the Blocks
Merge the two processed 32-bit blocks into a 64-bit block, 
arranging bits from both halves.

•	 Round Execution
•	 Steps 6 to 15 are repeated for the number of rounds 

determined in Step 5.
•	 The output of each round serves as the input for 

the next round.

•	 Final XOR Operation
•	 Once all rounds are completed, the final 64-bit result 

is XoRed with the fourth subkey (SKEY4).

Ciphertext Generation
•	 The final 64-bit result from step 17 is the ciphertext 

(CTEXT), ready for secure storage or transmission.

Experiment of Proposed ECEcipher

To demonstrate the functionality of the ECEcipher 
encryption technique, an experiment was conducted using 
hospital data as sample input. The encryption procedure 
follows the proposed methodology, ensuring the secure 
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transformation of sensitive information. 

Encryption Procedure
The encryption process begins with user-provided plaintext 
data, which is then processed as binary data. The first 64-bit 
block of the input is extracted and encrypted using the 
ECEcipher approach.

Step 1: User’s data are taken as input plain text (PTEXT)
Sample input data of user

PNAme PMR No DOB Hospital 
name Disease Amount

Raj S IP9475 10/4/2002 Kumars hunger 12000

PTEXT RajSIP947510/4/2002Kumarshunger12000

Step 1: Input plaintext (PTEXT)
•	 64-bit Plaintext block: RajSIP94
•	 This is the original user data block considered for 

encryption.

Step 2: Convert plaintext to binary
Each character is converted into its binary ASCII equivalent.

•	 Binary Representation
01010010 01100001 01101010 01010011 01001001 01010000 
00111001 00110100 00110111 00110101 00110001 00110000 
00101111 00110100 00101111 00110010 00110000 00110000 
00110010 01001011 01110101 01101101 01100001 01110010 
01110011 01101000 01110101 01101110 01100111 01100101 
01110010 00110001 00110010 00110000 00110000 00110000 
•	 Each character of the plaintext is converted into its 8-bit 

binary ASCII equivalent.

Step 3: Extract the First 64-bit Block

•	 First 64-bit Block for Encryption
01010010011000010110101001010011010010010101000000
11100100110100
•	 The encryption process works on 64-bit blocks at a time.

Step 4: Generate a 196-bit Encryption Key

•	 Generated 196-bit Key
0110011010110011010111000000111001101010010001111011
1100000101000110011001111001110100101101011001001010
1100101001010111011101000110001101100111100101111000
0010100101010011010000000001010101111110
•	 This key is generated for convergent encryption.

Step 5: Determine the Number of Encryption Rounds by 
Subkey1
•	 Last 4 Bits of Key (Subkey1): 1110
•	 Number of Rounds: 14 (Binary 1110 converted to decimal 14)

•	 The encryption process will execute 14 rounds.

Step 6: Convert Plaintext Block into an 8×8 Matrix

•	 Matrix Representation of the 64-bit Block
0  1  0  1  0  0  1  0  
0  1  1  0  0  0  0  1  
0  1  1  0  1  0  1  0  
0  1  0  1  0  0  1  1  
0  1  0  0  1  0  0  1  
0  1  0  1  0  0  0  0  
0  0  1  1  1  0  0  1  
0  0  1  1  0  1  0  0  

Step 7-8: Extract First 64-bit Subkey (Subkey2)
Subkey2: 0110011010110011010111000000111001101010010
001110110101010110001

•	 Converted to Decimal Values
[102, 179, 92, 62, 57, 78, 100, 113]

Step 9-10: Permutation Based on Column Sorting
•	 Columns are reordered based on the decimal values of 

Subkey2.
•	 The ascending order of these values determines the new 

column arrangement.

Step 11: Split into Two 32-bit Blocks
•	 Left Half (L1): First 32 bits of permuted matrix
•	 Right Half (R1): Last 32 bits of permuted matrix

Step 12-13: Extract Second 64-bit Subkey (Subkey3) and Split 
into 32-bit Keys
Subkey3 (64-bit): 1010111011001101010110000110111100111
001110101010110101001101101

•	 Split into Two 32-bit Keys
•	 K1: 10101110110011010101100001101111
•	 K2: 00111001110101010110101001101101

Step 14: XOR Operation with Subkeys
Left Half XOR K1: L1’ = L1 ⊕ K1
Right Half XOR K2: R1’ = R1 ⊕ K2

Step 15: Swap Blocks
•	 New Left Half: R1’
•	 New Right Half: L1’

Step 16: Repeat for 14 Encryption Rounds
This process repeats for 14 rounds, with the intermediate 
results of each round being used as input for the next round.

Step 17: Extract Final Subkey (Subkey4)
Subkey4 (64-bit): 0110101001110001010100110110111001011
101101100101101010110110111
•	 The final subkey is used for the last transformation.

Step 18: Perform Final XOR with Subkey4

•	 Final Ciphertext
1100101011001000010110101111101110001011111101001110
011010110101
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•	 This is the secure encrypted form of the input plaintext.

•	 Binary to ASCII Decimal:
[202, 200, 90, 251, 139, 244, 57, 173]

The final ciphertext: ╩╚Z√ï⌠9¡
Decryption Procedure
The authorized users decrypt the encrypted data using 
the same key used in the encryption process. In the above 
encryption process, a 196-bit is used, and the same key is 
used to decrypt the data. The process of decryption is the 
reverse procedure of encryption. 

Results and Discussion
The ECEcipher encryption algorithm and its key generation 
process have been implemented using C#.Net and deployed 
as a cloud service on the myASP.net platform-as-a-service 
(PaaS) environment. The efficiency of ECEcipher is assessed 
based on three key metrics: encryption time, decryption 
time, and security level.

To evaluate its security robustness, the encrypted data 
is subjected to attack simulations using the ABC Universal 
Hackman security analysis tool. This tool is installed 
on the cloud server and is designed to test encryption 
resilience by executing dictionary attacks and brute-force 
attacks to retrieve plaintext from encrypted data. The 
retrieved plaintext is compared with the original plaintext 
to determine the retrieval percentage, which serves as a 
benchmark for measuring the security strength of ECEcipher 
compared to existing encryption techniques.

Encryption Performance Evaluation
The encryption efficiency of ECEcipher is analyzed by 
measuring the time taken to encrypt data. Table 2 presents 
a comparative analysis of the encryption time required by 
ECEcipher, DES, and blowfish encryption algorithms. The 
results indicate that ECEcipher achieves faster encryption 
than both DES and blowfish when processing 64-bit data 
blocks.

Table 2 presents the encryption time required for 
ECEcipher, DES, and blowfish across different file sizes 
ranging from 10 to 50 KB. The results indicate that ECEcipher 

consistently requires less time for encryption compared to 
DES and Blowfish. For example, when encrypting a 10 KB 
file, DES requires 7 ms, Blowfish takes 4 ms, while ECEcipher 
completes the encryption in just 3 ms. As the file size 
increases, a similar trend is observed—ECEcipher maintains 
the lowest encryption time, taking only 18 ms for a 50 KB file, 
whereas DES requires 35 ms, which is nearly twice as long.

The significance of this result lies in ECEcipher’s 
enhanced efficiency. The reduction in encryption time is 
attributed to its optimized encryption structure, which 
dynamically selects the number of rounds based on the key 
rather than using a fixed-round approach like traditional 
algorithms. Faster encryption makes ECEcipher an ideal 
choice for real-time cloud storage applications, secured 
messaging systems, and financial transactions, where speed 
is critical without compromising security.

Decryption Performance Evaluation
Similarly, the decryption efficiency is assessed based on the 
time taken to decrypt encrypted data. Table 3 highlights the 
decryption time of ECEcipher, DES, and blowfish for different 
data sizes. The results indicate that ECEcipher outperforms 
other encryption techniques in terms of decryption speed.

Table 3 illustrates the decryption time required to recover 
the original plaintext from encrypted data using ECEcipher, 
DES, and blowfish. The results confirm that ECEcipher 
maintains the lowest decryption time across all file sizes, 
ensuring faster data retrieval. For instance, when decrypting 
a 10 KB file, ECEcipher takes 3 ms, while DES requires 6 ms, 
and blowfish takes 4 ms. As file size increases, ECEcipher 
continues to outperform its counterparts, requiring just 17 
ms for a 50 KB file, whereas DES demands 35 ms.

The key takeaway from these results is that ECEcipher 
not only encrypts data faster but also decrypts it efficiently, 
ensuring minimal processing delays in cloud-based 
environments. This is crucial for applications where quick 
access to encrypted data is necessary, such as secure 
cloud storage, e-commerce transactions, and medical data 
retrieval systems. Additionally, low decryption overhead 
makes ECEcipher an excellent choice for devices with limited 
computational power, such as IoT devices, mobile phones, 
and embedded systems.

Table 2: Encryption time comparison of ECEcipher with existing 
techniques

Size (KB) DES (ms) Blowfish (ms) ECEcipher (ms)

10 7 4 3

20 14 9 7

30 21 13 11

40 28 18 15

50 35 22 18

Table 3: Decryption time comparison of ECEcipher with existing 
techniques

Size (KB) DES (ms) Blowfish (ms) ECEcipher (ms)

10 6 4 3

20 13 8 6

30 20 12 10

40 27 17 14

50 35 21 17
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Impact of Number of Rounds on Computation Time
ECEcipher employs a dynamic round selection mechanism, 
unlike traditional encryption algorithms where the number of 
encryption rounds remains fixed. The number of encryption 
rounds in ECEcipher is dynamically determined based on 
the encryption key, ensuring greater unpredictability and 
enhanced security.

Table 4 presents a comparative analysis of the 
computation time for different encryption rounds across 
multiple data sizes. The results illustrate that ECEcipher 
efficiently handles encryption and decryption with minimal 
computational overhead.

Table 4 examines the computation time required for 
ECEcipher across different numbers of encryption rounds. 
Unlike traditional encryption techniques, where the number 
of rounds is fixed, ECEcipher dynamically determines the 
number of encryption rounds based on the encryption 
key, enhancing both efficiency and security. The results 
indicate that while higher rounds increase computation 
time, ECEcipher still maintains an efficient processing rate. 
For example, encrypting a 10 KB file with 5 rounds takes 
only 1.2 ms, whereas 15 rounds require 3.5 ms. Even for 
larger file sizes, such as 50 KB, the increase in computation 
time remains controlled, with 5 rounds taking 6.1 ms and 15 
rounds requiring 17.3 ms.

This adaptive encryption approach allows users to 
balance security and performance based on their specific 
requirements. Fewer rounds ensure fast encryption for 
low-risk applications, while more rounds provide enhanced 
security for highly sensitive data. This makes ECEcipher highly 
scalable and adaptable for different security needs, such as 
banking transactions, secure file transfers, and government 
data protection. The ability to increase encryption rounds 
without significantly affecting performance gives ECEcipher 
a distinct advantage over traditional encryption methods.

Security Strength Analysis
The security strength of ECEcipher is assessed using the 
ABC Hackman Tool, which evaluates encryption robustness 
against brute-force and dictionary attacks. This tool 
attempts to extract the original plaintext from encrypted 
ciphertext stored in the cloud and calculates the percentage 
of successful retrieval.

To measure the level of security, the following parameters 
are considered:
•	 Ed: Total amount of encrypted text stored in cloud 

storage.
•	 Ex: Amount of original text retrieved by ABC Hackman 

after an attack.
The deviation between encrypted text and retrieved 

text is computed using the following formula:

DNm = Ed−Ex

The security level percentage (Sl) is then calculated as:

*100DNmSI
Ed

=  

Where Sl represents the security level percentage of the 
encryption technique.

Table 5 provides a comparative analysis of the security 
levels of ECEcipher, DES, and Blowfish encryption algorithms.

Table 5 presents the security strength of ECEcipher 
compared to DES and Blowfish, evaluated using the ABC 
Hackman tool. This tool analyzes encryption resilience 
against brute-force and dictionary attacks by attempting to 
recover the original plaintext from encrypted data stored 
in the cloud. The security level is determined by measuring 
the percentage of original text that remains protected after 
the attack. The results demonstrate that ECEcipher achieves 
the highest security level of 90%, outperforming DES (82%) 
and Blowfish (88%).

These findings confirm the superior encryption strength 
of ECEcipher, making it highly resistant to common 
cryptographic attacks. The higher security level is attributed 
to ECEcipher’s key-based dynamic round selection, 
substitution-permutation structure, and advanced XOR 
transformations. This ensures that even if an attacker gains 
access to the encrypted text, extracting meaningful data 
remains computationally infeasible. As a result, ECEcipher is 
well-suited for high-security applications, including military 
communications, financial data security, and enterprise 
cloud storage.

Conclusion
Cloud environments provide scalable data storage solutions, 
but ensuring data security remains a critical challenge 
for users. The proposed ECEcipher encryption technique 
enhances public cloud security by enabling users to 

Table 4: Computation time comparison for different rounds

Size (KB) 5 Rounds 
(ms)

8 Rounds 
(ms)

10 Rounds 
(ms)

15 Rounds 
(ms)

10 1.2 1.9 2.3 3.5

20 2.5 3.7 4.6 6.9

30 3.5 5.8 7.0 10.6

40 4.8 7.5 9.2 14.1

50 6.1 9.6 11.6 17.3

Table 5: Security level comparison of ececipher with existing 
techniques

S. No. Encryption technique Security level (%)

1 DES 82

2 Blowfish 88

3 ECEcipher 90
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encrypt data before transmission, preventing unauthorized 
access. ECEcipher is a symmetric block cipher encryption 
method that utilizes a 196-bit encryption key, generated 
within a cloud key service and securely distributed to 
users. The encryption and decryption process maintains 
low computation time, making it faster than traditional 
encryption techniques such as DES and blowfish. Security 
analysis results confirm that ECEcipher provides superior 
protection against brute-force and dictionary attacks, 
achieving a higher security level than existing techniques. 
The proposed encryption method has been successfully 
implemented as a cloud service and deployed in a cloud-
based environment, ensuring real-world applicability. 
Comparative analysis, presented in tables and figures, 
demonstrates that ECEcipher significantly outperforms 
existing encryption algorithms in terms of efficiency and 
security. Future research will focus on developing an 
enhanced symmetric encryption technique for private cloud 
environments, further improving confidentiality and data 
protection mechanisms in enterprise cloud systems.
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