
Abstract
Cloud computing offers scalable and cost-effective storage solutions, but concerns over data security, unauthorized access, and storage
inefficiencies remain significant. Data deduplication is crucial in reducing storage costs by eliminating redundant copies, yet traditional
encryption methods hinder deduplication by generating unique ciphertexts for identical plaintexts, leading to increased storage
requirements. To address these challenges, this paper presents ECEcipher, an advanced symmetric block cipher encryption technique
that integrates convergent encryption for secure deduplication while ensuring strong data security. It uses a 196-bit encryption key,
generated from the plaintext data, and applies substitution and permutation operations for enhanced security. Unlike conventional
encryption, ECEcipher dynamically determines encryption rounds, making it harder to break. Performance evaluation shows ECEcipher
outperforms DES and Blowfish in encryption speed and efficiency, making it ideal for real-time cloud applications. Additionally, ECEcipher
supports deduplication without compromising security, ensuring optimized storage utilization. Security analysis using the ABC Universal
Hackman tool confirms higher resistance to brute-force and dictionary attacks.
Keywords: Cloud security, Deduplication, Convergent encryption, Data confidentiality, Block cipher encryption.

ECE cipher: Enhanced convergent encryption for securing and
deduplicating public cloud data
Priya Nandhagopal*, Jayasimman Lawrence

RESEARCH ARTICLE

© The Scientific Temper. 2025
Received: 22/12/2024				 Accepted: 09/01/2025			 Published : 20/03/2025

Department of Computer Science, Bishop Heber College,
Tiruchirappalli, Affiliated to Bharathidasan University, Tamil Nadu,
India.
*Corresponding Author: Priya Nandhagopal, Department of
Computer Science, Bishop Heber College, Tiruchirappalli, Affiliated
to Bharathidasan University, Tamil Nadu, India., E-Mail: priya.
phdbhc@gmail.com
How to cite this article: Nandhagopal, P., Lawrence, J. (2025).
ECE cipher: Enhanced convergent encryption for securing
and deduplicating public cloud data. The Scientific Temper,
16(2):3783-3791.
Doi: 10.58414/SCIENTIFICTEMPER.2025.16.2.10
Source of support: Nil

Conflict of interest: None.

Introduction
Cloud computing offers a robust and scalable environment
for data storage, allowing users to store large volumes of
information efficiently. Organizations, particularly those
handling massive datasets, benefit from cloud storage by
reducing the need for costly on-premise infrastructure
(Arockiam L. et al., 2013). Enterprises, especially small-scale
businesses, can optimize storage costs by renting cloud
storage resources instead of investing in expensive servers.
The scalability of cloud storage enables users to adjust

The Scientific Temper (2025) Vol. 16 (2): 3783-3791	 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2025.16.2.10	 https://scientifictemper.com/

storage capacity dynamically, ensuring flexibility and cost
efficiency. One of the major advantages of cloud storage is
its reliability, as data stored in the cloud can be retrieved
on demand. Additionally, cloud storage protects data from
physical damage caused by natural disasters, ensuring
business continuity. Storage can be either dedicated or
shared, with shared storage options available at a minimal
cost in public cloud environments.

Despite these benefits, cloud storage faces a significant
challenge—data duplication. Data deduplication is a
common practice in cloud storage that aims to eliminate
redundant copies of files stored by multiple users (Sabeerath
K., et al., 2024a). Since many users store identical files,
cloud service providers (CSPs) implement deduplication
techniques to minimize storage space and improve
efficiency. Deduplication helps reduce storage costs and
bandwidth consumption by ensuring that only a single
instance of a file is stored, while duplicate copies are linked
to the original data. However, this process poses a serious
security risk, as traditional encryption methods prevent
deduplication by generating unique ciphertexts for identical
plaintexts. If different users encrypt the same file with
different keys, the cloud system treats them as separate
files, increasing storage redundancy.

To address this issue, convergent encryption (CE) has
emerged as an effective solution for enabling secure
deduplication in cloud storage (Selvaraj R. et al., 2023a).

The Scientific Temper. Vol. 16, No. 2 	 Nandhagopal and Lawrence 	 3784

Convergent encryption ensures that identical plaintexts
produce the same ciphertext, allowing the cloud system
to detect duplicate data and store only one encrypted
version of the file, thereby optimizing storage efficiency. In
this approach, a cryptographic key is derived from the data
itself, meaning that only users who possess the original
file can generate the same encryption key to decrypt
it. This mechanism allows cloud storage providers to
perform deduplication while ensuring data confidentiality
(Sabeerath K., et al., 2024b). However, convergent encryption
also presents security vulnerabilities, particularly against
brute-force and dictionary attacks, where an attacker can
precompute ciphertexts for commonly stored files and
attempt to match encrypted data with known plaintexts.
This creates a trade-off between storage efficiency and data
security (Selvaraj R. et al., 2023b). To strengthen security,
advanced encryption methods must integrate robust
cryptographic techniques while maintaining support for
deduplication.

To enhance cloud data security, this paper introduces
ECEcipher, an advanced encryption technique designed to
fortify data protection in cloud environments. ECEcipher is
a symmetric block cipher convergent encryption method
specifically developed to secure data stored in public cloud
infrastructures. The encryption process is offered as a cloud-
based service, with the required encryption keys retrieved
from a dedicated cloud key management system. The
proposed encryption approach employs substitution and
permutation techniques to ensure strong data protection.
It processes 64-bit plaintext and encrypts it using a 196-bit
encryption key, significantly enhancing data confidentiality.
By integrating advanced encryption mechanisms, ECEcipher
aims to address the limitations of traditional encryption
methods, ensuring both high security and storage efficiency.

Related Work
Cloud storage faces challenges in data security and privacy,
particularly in ensuring confidentiality and trust in service
providers. To address this, Arockiam et al. (2013) propose a
hybrid symmetric encryption algorithm to protect cloud-
stored data from unauthorized access. Their method
enhances security and storage efficiency by leveraging
symmetric encryption techniques. The proposed method
encrypts data before transmission and storage, reducing
risks from external threats and insider attacks. Integrating
access control measures further minimizes unauthorized
data exposure. The study analyzes the encryption and
decryption processes, demonstrating improved cloud
security. Their findings confirm that this technique offers
a robust, efficient solution for protecting cloud-based
information while ensuring optimal performance.

Ensuring cloud data security is a major challenge,
requiring multi-layered protection to prevent unauthorized

access. To enhance confidentiality, Arockiam et al. (2014)
propose a dual-layered approach combining encryption
and obfuscation. While encryption secures data, obfuscation
makes it unreadable to attackers, ensuring stronger
protection. Even if encrypted data is accessed, deciphering
it remains extremely difficult without authorization. The
authors argue that encryption alone has vulnerabilities,
making obfuscation essential for better resilience against
cryptographic attacks. Their strategy effectively addresses
growing concerns over cloud data privacy, offering a
comprehensive security solution. The authors confirm that
even if intercepted, encrypted data remains inaccessible,
reinforcing confidentiality and integrity in cloud storage
environments.

Ensuring data confidentiality in cloud storage is
challenging, especially with third-party providers managing
data. To address this, da Rocha et al. (2020) propose a client-
side encryption solution using Intel’s SGX within a trusted
execution environment (TEE). This method ensures that data
is encrypted before uploading, preventing unauthorized
access, even if the cloud provider is compromised. By
integrating their approach with Cryptomator, a widely
used client-side encryption tool, they demonstrate its
feasibility and effectiveness in enhancing cloud security.
The SGX-based encryption strengthens confidentiality and
access control, protecting sensitive data from breaches.
The paper emphasizes the importance of trusted execution
environments in modern cloud security, offering a scalable
and practical solution that maintains both security and
usability.

Securing smart system data in cloud environments
is a growing challenge, requiring robust encryption
mechanisms. To address this, Qureshi et al. (2022) conducted
a comprehensive survey of encryption techniques for cloud-
based smart systems. Their study provides a comparative
analysis of various methods, highlighting strengths,
limitations, and applications. The authors use graphical
workflows to simplify encryption processes, helping
researchers and practitioners evaluate effective security
strategies. By consolidating encryption techniques, the
survey serves as a valuable reference for enhancing cloud
security. The paper emphasizes the need for balancing
security, efficiency, and computational cost, ensuring
optimal data protection in cloud infrastructures.

Securing cloud-stored data is increasingly important
due to rising cyber threats and unauthorized access risks. To
address this, Aruljothi Rajasekaran et al. (2024) introduce the
enhanced cloud data security (ECDS) technique, designed
to strengthen data protection in cloud infrastructures.
ECDS focuses on mitigating cloud storage vulnerabilities
by implementing advanced security measures that ensure
confidentiality and integrity. While specific technical
details are not fully outlined, the authors emphasize robust

3785	 Enhanced convergent encryption for securing and deduplicating public cloud data

encryption protocols and access control mechanisms to
safeguard sensitive cloud data. The authors stress the need
for enhanced security frameworks to prevent unauthorized
access, breaches, and insider threats. By integrating
strong encryption techniques, ECDS enhances cloud data
confidentiality, making it more resistant to cyberattacks.
The study contributes to ongoing cloud security research,
providing a framework for secure data storage, privacy
protection, and reliable access control in modern cloud
environments.

Ensuring cloud data security is crucial due to the risks
of unauthorized access and data breaches. Aslam et al.
(2024) propose a hybrid encryption model that combines
symmetric encryption for speed and asymmetric encryption
for secure key management, enhancing data confidentiality
and efficiency. Their study evaluates encryption and
decryption times, demonstrating improved security with
minimal performance impact. Additionally, the research
highlights user education as vital in enhancing cloud
security, recommending training programs on encryption
best practices. Further analysis confirms the model’s
resistance to brute-force and man-in-the-middle attacks.
Aslam et al. (2024) conclude that their approach provides
a secure and efficient encryption framework, ensuring
strong cloud data protection while maintaining optimal
performance for modern cloud applications. Table 1 shows
a comparison of the related works discussed in this paper.

Methodology
The proposed ECEcipher is a symmetric block convergent
encryption technique designed to enhance data security in
cloud storage. It employs a secret key for both encryption
and decryption, ensuring that only authorized users with the
correct key can access the original data. Unlike traditional
symmetric encryption methods that use a fixed number
of processing rounds for all plaintext inputs, ECEcipher

introduces a dynamic round selection mechanism to
strengthen security.

Key Features of ECEcipher

Dynamic Encryption Rounds
Conventional encryption techniques use a predetermined
number of encryption and decryption rounds, making them
susceptible to cryptanalysis. Attackers can analyze patterns
in ciphertext to infer plaintext. In contrast, ECEcipher
dynamically determines the number of encryption and
decryption rounds based on the key, ensuring greater
unpredictability and resistance to attacks.

Enhanced Key Structure
The encryption technique employs a 200-bit convergent
key, which is later transformed into a 196-bit encryption key
through a systematic process:
•	 The original 200-bit key is generated from the plaintext

data.
•	 The last 8 bits of the key are split into two 4-bit segments.
•	 The first 4-bit segment is discarded, leaving a 196-bit

final key for encryption.
•	 The remaining 4-bit segment (Subkey1) determines the

number of encryption rounds for a given plaintext.
•	 The same process is followed during decryption to

maintain consistency.

Key Generation Mechanism
The encryption key consists of 25 character length digest
value from the plaintext, each 8-bit in length, making it
highly secure and difficult to predict. The dynamic nature
of key-based round selection further complicates brute-
force attacks.

Proposed ECEcipher
The proposed ECEcipher convergent encryption method
processes 64-bit plaintext as input and produces 64-bit

Table 1: Comparison of related works

Reference Encryption type Security focus Methodology Performance impact Application

Arockiam et al. (2013) Hybrid symmetric
encryption

Data confidentiality &
efficiency

Symmetric encryption
for secure storage

Efficient & secure Cloud data storage

Arockiam et al. (2014) Encryption &
obfuscation

Multi-layered security Combining encryption
& obfuscation

Improved security,
slight overhead

Cloud privacy
protection

da Rocha et al. (2020) Client-side
encryption (sgx)

Prevent unauthorized
access

SGX-based
Trusted Execution
Environment

Minimal performance
loss

Securing cloud-
stored data

Qureshi et al. (2022) Survey on various
techniques

Comparative study of
encryption

Comparative analysis
& graphical workflows

Dependent on
technique used

General cloud-
based encryption

Aruljothi Rajasekaran
et al. (2024)

ECDS - advanced
encryption

Cloud data protection Enhanced security
frameworks

Improved security &
control

Cloud infrastructure
security

Aslam et al. (2024) Hybrid Encryption
(Symmetric &
Asymmetric)

Cloud security with
user awareness

Combining symmetric
& asymmetric
encryption

Strong security
without major
performance loss

Cloud data
confidentiality

The Scientific Temper. Vol. 16, No. 2 	 Nandhagopal and Lawrence 	 3786

ciphertext as output. Figure 1 shows the block diagram
of ECEcipher. The encryption process integrates two
fundamental cryptographic techniques: substitution and
transposition. Unlike traditional encryption methods with a
fixed number of rounds, ECEcipher dynamically determines
the number of encryption rounds based on the key,
enhancing security against cryptanalysis.

Dynamic Round Execution
•	 The number of encryption rounds is not predetermined

but is dynamically derived from Subkey1 of the
encryption key.

•	 This dynamic variation ensures that different plaintext
inputs undergo varying encryption rounds, making it
difficult for attackers to infer patterns.

Key Structure and Subkey Functions
The 196-bit encryption key is divided into four subkeys, each
playing a distinct role in the encryption process:

•	 Subkey1
Determines the number of encryption rounds for a given
plaintext.

•	 Subkey2
Controls the bit permutation (transposition), ensuring a
rearrangement of bits before further processing.

•	 Subkey3
A 64-bit key, which is further divided into two 32-bit
segments for additional cryptographic operations.

•	 Subkey4
After all rounds, a 64-bit output is derived. It is XoRed with
the fourth subkey.

Step-by-Step Encryption Process

•	 Bit Permutation (Transposition)
•	 The 64-bit plaintext undergoes permutation based

on Subkey2, effectively shuffling the bit positions to
introduce diffusion.

•	 Splitting of Data
•	 After permutation, the 64-bit data is divided into

two 32-bit halves.
•	 Similarly, Subkey3 (64-bit) is also divided into two

32-bit subkeys.

•	 XOR Operation
•	 Each 32-bit half of plaintext is XoRed with the

corresponding 32-bit subkey from Subkey3.

•	 Bit Swapping
•	 The resulting two 32-bit halves are swapped to

enhance confusion, making it difficult to trace

Figure 1: ECEcipher block diagram

3787	 Enhanced convergent encryption for securing and deduplicating public cloud data

patterns in the encryption process.

•	 Merging and Round Completion
•	 The swapped halves are merged back into a 64-bit

block.
•	 This completes one round of encryption.
•	 The process repeats for the dynamically determined

number of rounds.
By implementing substitution, permutation, XOR

operations, and dynamic round selection, ECEcipher
significantly strengthens encryption security, making it
resistant to cryptanalysis attacks. The decryption process
follows the same logic in reverse, ensuring accurate retrieval
of the original plaintext.

 The encryption process continues for the number of
rounds dynamically determined by Subkey1. Each round
follows the structured sequence of permutation, XOR
operations, swapping, and merging to enhance data
security.

Once all encryption rounds are completed:
•	 The final 64-bit processed data undergoes an XOR

operation with Subkey4.
•	 This final XOR operation further obfuscates the data,

strengthening resistance against cryptanalysis.
•	 The resulting 64-bit output is the ciphertext, which

is securely stored or transmitted.
By incorporating dynamic round execution and multi-

layered encryption transformations, ECEcipher ensures
robust confidentiality, making it significantly more secure
than conventional block cipher techniques.

ECEcipher Encryption Procedure
The ECEcipher encryption and decryption process follows a
structured set of steps to ensure secure data transformation.
Below is a detailed breakdown of the encryption procedure:

Procedure for ECEcipher Encryption

•	 Input Data Acquisition
•	 The user’s data is taken as input plaintext (PTEXT).

•	 Binary Conversion
•	 Convert the plaintext (PTEXT) into its binary

representation.

•	 Block Division
•	 The input plaintext is divided into 64-bit blocks, as

ECEcipher processes 64-bit data blocks at a time.

•	 Key Retrieval
•	 Obtain a 196-bit convergent encryption key (KEY)

from the plaintext.

•	 Round Determination
•	 Extract the last four bits from the 196-bit KEY to

determine the number of encryption rounds.

•	 Matrix Formation
•	 Convert the 64-bit plaintext block into an 8×8

matrix (MAT).

•	 Subkey Extraction - SKEY2
•	 Retrieve the first 64-bit subkey (SKEY2) from the

196-bit KEY.

•	 Decimal Conversion
•	 Convert SKEY2 (64-bit) into eight decimal values.

•	 Column Labeling
•	 Assign these eight decimal values as labels to the

top of each column in the matrix.

•	 Column-Based Bit Rearrangement
•	 Read bits column-wise based on the ascending

order of the decimal values assigned to the columns.

•	 Splitting into Two Halves
•	 The 64-bit rearranged data is split into two 32-bit

halves by separating even and odd positional bits.

•	 Subkey Extraction - SKEY3
•	 Retrieve the second 64-bit subkey (SKEY3) from the

196-bit KEY.

•	 Splitting SKEY3
•	 Divide SKEY3 into two 32-bit subkeys.

•	 XOR Operation
•	 Perform the XOR operation between the two 32-bit

plaintext halves and their corresponding 32-bit
subkeys.

•	 Merging the Blocks
Merge the two processed 32-bit blocks into a 64-bit block,
arranging bits from both halves.

•	 Round Execution
•	 Steps 6 to 15 are repeated for the number of rounds

determined in Step 5.
•	 The output of each round serves as the input for

the next round.

•	 Final XOR Operation
•	 Once all rounds are completed, the final 64-bit result

is XoRed with the fourth subkey (SKEY4).

Ciphertext Generation
•	 The final 64-bit result from step 17 is the ciphertext

(CTEXT), ready for secure storage or transmission.

Experiment of Proposed ECEcipher

To demonstrate the functionality of the ECEcipher
encryption technique, an experiment was conducted using
hospital data as sample input. The encryption procedure
follows the proposed methodology, ensuring the secure

The Scientific Temper. Vol. 16, No. 2 	 Nandhagopal and Lawrence 	 3788

transformation of sensitive information.

Encryption Procedure
The encryption process begins with user-provided plaintext
data, which is then processed as binary data. The first 64-bit
block of the input is extracted and encrypted using the
ECEcipher approach.

Step 1: User’s data are taken as input plain text (PTEXT)
Sample input data of user

PNAme PMR No DOB Hospital
name Disease Amount

Raj S IP9475 10/4/2002 Kumars hunger 12000

PTEXT RajSIP947510/4/2002Kumarshunger12000

Step 1: Input plaintext (PTEXT)
•	 64-bit Plaintext block: RajSIP94
•	 This is the original user data block considered for

encryption.

Step 2: Convert plaintext to binary
Each character is converted into its binary ASCII equivalent.

•	 Binary Representation
01010010 01100001 01101010 01010011 01001001 01010000
00111001 00110100 00110111 00110101 00110001 00110000
00101111 00110100 00101111 00110010 00110000 00110000
00110010 01001011 01110101 01101101 01100001 01110010
01110011 01101000 01110101 01101110 01100111 01100101
01110010 00110001 00110010 00110000 00110000 00110000
•	 Each character of the plaintext is converted into its 8-bit

binary ASCII equivalent.

Step 3: Extract the First 64-bit Block

•	 First 64-bit Block for Encryption
01010010011000010110101001010011010010010101000000
11100100110100
•	 The encryption process works on 64-bit blocks at a time.

Step 4: Generate a 196-bit Encryption Key

•	 Generated 196-bit Key
0110011010110011010111000000111001101010010001111011
1100000101000110011001111001110100101101011001001010
1100101001010111011101000110001101100111100101111000
0010100101010011010000000001010101111110
•	 This key is generated for convergent encryption.

Step 5: Determine the Number of Encryption Rounds by
Subkey1
•	 Last 4 Bits of Key (Subkey1): 1110
•	 Number of Rounds: 14 (Binary 1110 converted to decimal 14)

•	 The encryption process will execute 14 rounds.

Step 6: Convert Plaintext Block into an 8×8 Matrix

•	 Matrix Representation of the 64-bit Block
0 1 0 1 0 0 1 0
0 1 1 0 0 0 0 1
0 1 1 0 1 0 1 0
0 1 0 1 0 0 1 1
0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0
0 0 1 1 1 0 0 1
0 0 1 1 0 1 0 0

Step 7-8: Extract First 64-bit Subkey (Subkey2)
Subkey2: 0110011010110011010111000000111001101010010
001110110101010110001

•	 Converted to Decimal Values
[102, 179, 92, 62, 57, 78, 100, 113]

Step 9-10: Permutation Based on Column Sorting
•	 Columns are reordered based on the decimal values of

Subkey2.
•	 The ascending order of these values determines the new

column arrangement.

Step 11: Split into Two 32-bit Blocks
•	 Left Half (L1): First 32 bits of permuted matrix
•	 Right Half (R1): Last 32 bits of permuted matrix

Step 12-13: Extract Second 64-bit Subkey (Subkey3) and Split
into 32-bit Keys
Subkey3 (64-bit): 1010111011001101010110000110111100111
001110101010110101001101101

•	 Split into Two 32-bit Keys
•	 K1: 10101110110011010101100001101111
•	 K2: 00111001110101010110101001101101

Step 14: XOR Operation with Subkeys
Left Half XOR K1: L1’ = L1 ⊕ K1
Right Half XOR K2: R1’ = R1 ⊕ K2

Step 15: Swap Blocks
•	 New Left Half: R1’
•	 New Right Half: L1’

Step 16: Repeat for 14 Encryption Rounds
This process repeats for 14 rounds, with the intermediate
results of each round being used as input for the next round.

Step 17: Extract Final Subkey (Subkey4)
Subkey4 (64-bit): 0110101001110001010100110110111001011
101101100101101010110110111
•	 The final subkey is used for the last transformation.

Step 18: Perform Final XOR with Subkey4

•	 Final Ciphertext
1100101011001000010110101111101110001011111101001110
011010110101

3789	 Enhanced convergent encryption for securing and deduplicating public cloud data

•	 This is the secure encrypted form of the input plaintext.

•	 Binary to ASCII Decimal:
[202, 200, 90, 251, 139, 244, 57, 173]

The final ciphertext: ╩╚Z√ï⌠9¡
Decryption Procedure
The authorized users decrypt the encrypted data using
the same key used in the encryption process. In the above
encryption process, a 196-bit is used, and the same key is
used to decrypt the data. The process of decryption is the
reverse procedure of encryption.

Results and Discussion
The ECEcipher encryption algorithm and its key generation
process have been implemented using C#.Net and deployed
as a cloud service on the myASP.net platform-as-a-service
(PaaS) environment. The efficiency of ECEcipher is assessed
based on three key metrics: encryption time, decryption
time, and security level.

To evaluate its security robustness, the encrypted data
is subjected to attack simulations using the ABC Universal
Hackman security analysis tool. This tool is installed
on the cloud server and is designed to test encryption
resilience by executing dictionary attacks and brute-force
attacks to retrieve plaintext from encrypted data. The
retrieved plaintext is compared with the original plaintext
to determine the retrieval percentage, which serves as a
benchmark for measuring the security strength of ECEcipher
compared to existing encryption techniques.

Encryption Performance Evaluation
The encryption efficiency of ECEcipher is analyzed by
measuring the time taken to encrypt data. Table 2 presents
a comparative analysis of the encryption time required by
ECEcipher, DES, and blowfish encryption algorithms. The
results indicate that ECEcipher achieves faster encryption
than both DES and blowfish when processing 64-bit data
blocks.

Table 2 presents the encryption time required for
ECEcipher, DES, and blowfish across different file sizes
ranging from 10 to 50 KB. The results indicate that ECEcipher

consistently requires less time for encryption compared to
DES and Blowfish. For example, when encrypting a 10 KB
file, DES requires 7 ms, Blowfish takes 4 ms, while ECEcipher
completes the encryption in just 3 ms. As the file size
increases, a similar trend is observed—ECEcipher maintains
the lowest encryption time, taking only 18 ms for a 50 KB file,
whereas DES requires 35 ms, which is nearly twice as long.

The significance of this result lies in ECEcipher’s
enhanced efficiency. The reduction in encryption time is
attributed to its optimized encryption structure, which
dynamically selects the number of rounds based on the key
rather than using a fixed-round approach like traditional
algorithms. Faster encryption makes ECEcipher an ideal
choice for real-time cloud storage applications, secured
messaging systems, and financial transactions, where speed
is critical without compromising security.

Decryption Performance Evaluation
Similarly, the decryption efficiency is assessed based on the
time taken to decrypt encrypted data. Table 3 highlights the
decryption time of ECEcipher, DES, and blowfish for different
data sizes. The results indicate that ECEcipher outperforms
other encryption techniques in terms of decryption speed.

Table 3 illustrates the decryption time required to recover
the original plaintext from encrypted data using ECEcipher,
DES, and blowfish. The results confirm that ECEcipher
maintains the lowest decryption time across all file sizes,
ensuring faster data retrieval. For instance, when decrypting
a 10 KB file, ECEcipher takes 3 ms, while DES requires 6 ms,
and blowfish takes 4 ms. As file size increases, ECEcipher
continues to outperform its counterparts, requiring just 17
ms for a 50 KB file, whereas DES demands 35 ms.

The key takeaway from these results is that ECEcipher
not only encrypts data faster but also decrypts it efficiently,
ensuring minimal processing delays in cloud-based
environments. This is crucial for applications where quick
access to encrypted data is necessary, such as secure
cloud storage, e-commerce transactions, and medical data
retrieval systems. Additionally, low decryption overhead
makes ECEcipher an excellent choice for devices with limited
computational power, such as IoT devices, mobile phones,
and embedded systems.

Table 2: Encryption time comparison of ECEcipher with existing
techniques

Size (KB) DES (ms) Blowfish (ms) ECEcipher (ms)

10 7 4 3

20 14 9 7

30 21 13 11

40 28 18 15

50 35 22 18

Table 3: Decryption time comparison of ECEcipher with existing
techniques

Size (KB) DES (ms) Blowfish (ms) ECEcipher (ms)

10 6 4 3

20 13 8 6

30 20 12 10

40 27 17 14

50 35 21 17

The Scientific Temper. Vol. 16, No. 2 	 Nandhagopal and Lawrence 	 3790

Impact of Number of Rounds on Computation Time
ECEcipher employs a dynamic round selection mechanism,
unlike traditional encryption algorithms where the number of
encryption rounds remains fixed. The number of encryption
rounds in ECEcipher is dynamically determined based on
the encryption key, ensuring greater unpredictability and
enhanced security.

Table 4 presents a comparative analysis of the
computation time for different encryption rounds across
multiple data sizes. The results illustrate that ECEcipher
efficiently handles encryption and decryption with minimal
computational overhead.

Table 4 examines the computation time required for
ECEcipher across different numbers of encryption rounds.
Unlike traditional encryption techniques, where the number
of rounds is fixed, ECEcipher dynamically determines the
number of encryption rounds based on the encryption
key, enhancing both efficiency and security. The results
indicate that while higher rounds increase computation
time, ECEcipher still maintains an efficient processing rate.
For example, encrypting a 10 KB file with 5 rounds takes
only 1.2 ms, whereas 15 rounds require 3.5 ms. Even for
larger file sizes, such as 50 KB, the increase in computation
time remains controlled, with 5 rounds taking 6.1 ms and 15
rounds requiring 17.3 ms.

This adaptive encryption approach allows users to
balance security and performance based on their specific
requirements. Fewer rounds ensure fast encryption for
low-risk applications, while more rounds provide enhanced
security for highly sensitive data. This makes ECEcipher highly
scalable and adaptable for different security needs, such as
banking transactions, secure file transfers, and government
data protection. The ability to increase encryption rounds
without significantly affecting performance gives ECEcipher
a distinct advantage over traditional encryption methods.

Security Strength Analysis
The security strength of ECEcipher is assessed using the
ABC Hackman Tool, which evaluates encryption robustness
against brute-force and dictionary attacks. This tool
attempts to extract the original plaintext from encrypted
ciphertext stored in the cloud and calculates the percentage
of successful retrieval.

To measure the level of security, the following parameters
are considered:
•	 Ed: Total amount of encrypted text stored in cloud

storage.
•	 Ex: Amount of original text retrieved by ABC Hackman

after an attack.
The deviation between encrypted text and retrieved

text is computed using the following formula:

DNm = Ed−Ex

The security level percentage (Sl) is then calculated as:

*100DNmSI
Ed

=

Where Sl represents the security level percentage of the
encryption technique.

Table 5 provides a comparative analysis of the security
levels of ECEcipher, DES, and Blowfish encryption algorithms.

Table 5 presents the security strength of ECEcipher
compared to DES and Blowfish, evaluated using the ABC
Hackman tool. This tool analyzes encryption resilience
against brute-force and dictionary attacks by attempting to
recover the original plaintext from encrypted data stored
in the cloud. The security level is determined by measuring
the percentage of original text that remains protected after
the attack. The results demonstrate that ECEcipher achieves
the highest security level of 90%, outperforming DES (82%)
and Blowfish (88%).

These findings confirm the superior encryption strength
of ECEcipher, making it highly resistant to common
cryptographic attacks. The higher security level is attributed
to ECEcipher’s key-based dynamic round selection,
substitution-permutation structure, and advanced XOR
transformations. This ensures that even if an attacker gains
access to the encrypted text, extracting meaningful data
remains computationally infeasible. As a result, ECEcipher is
well-suited for high-security applications, including military
communications, financial data security, and enterprise
cloud storage.

Conclusion
Cloud environments provide scalable data storage solutions,
but ensuring data security remains a critical challenge
for users. The proposed ECEcipher encryption technique
enhances public cloud security by enabling users to

Table 4: Computation time comparison for different rounds

Size (KB) 5 Rounds
(ms)

8 Rounds
(ms)

10 Rounds
(ms)

15 Rounds
(ms)

10 1.2 1.9 2.3 3.5

20 2.5 3.7 4.6 6.9

30 3.5 5.8 7.0 10.6

40 4.8 7.5 9.2 14.1

50 6.1 9.6 11.6 17.3

Table 5: Security level comparison of ececipher with existing
techniques

S. No. Encryption technique Security level (%)

1 DES 82

2 Blowfish 88

3 ECEcipher 90

3791	 Enhanced convergent encryption for securing and deduplicating public cloud data

encrypt data before transmission, preventing unauthorized
access. ECEcipher is a symmetric block cipher encryption
method that utilizes a 196-bit encryption key, generated
within a cloud key service and securely distributed to
users. The encryption and decryption process maintains
low computation time, making it faster than traditional
encryption techniques such as DES and blowfish. Security
analysis results confirm that ECEcipher provides superior
protection against brute-force and dictionary attacks,
achieving a higher security level than existing techniques.
The proposed encryption method has been successfully
implemented as a cloud service and deployed in a cloud-
based environment, ensuring real-world applicability.
Comparative analysis, presented in tables and figures,
demonstrates that ECEcipher significantly outperforms
existing encryption algorithms in terms of efficiency and
security. Future research will focus on developing an
enhanced symmetric encryption technique for private cloud
environments, further improving confidentiality and data
protection mechanisms in enterprise cloud systems.

Acknowledgment
We sincerely acknowledge the Head of the department,
Dr. J. James Manoharan, and Dr. J. Princy Merlin, Principal
of the institution, for providing the facility to complete this
paper Successfully.

References
Arockiam, L., & Monikandan, S. (2013). Data security and privacy

in cloud storage using hybrid symmetric encryption
algorithm. International Journal of Advanced Research in
Computer and Communication Engineering, 2(8), 3064-3070.

Arockiam, L., & Monikandan, S. (2014, January). Efficient cloud
storage confidentiality to ensure data security. In 2014
International Conference on Computer Communication and
Informatics (pp. 1-5). IEEE.

Arockiam, L., Monikandan, S., & Parthasarathy, G. (2017).

Cloud computing: A survey. Journal of Computer and
Communication Technology: Vol, 8(1), 4. https://core.ac.uk/
download/pdf/480907559.pdf

Aruljothi Rajasekaran, & Jemima Priyadarsini R. (2024). ECDS:
Enhanced Cloud Data Security Technique to Protect Data
Being Stored in Cloud Infrastructure: Data Security in Cloud
Infrastructure. The Scientific Temper, 15(04), 3113–3121.

https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.19
Aslam, J. M., & Kumar, K. M. (2024). Enhancing cloud data security:

User-centric approaches and advanced mechanisms. The
Scientific Temper, 15(01), 1784–1789.

https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.29
da Rocha, M., Valadares, D. C. G., Perkusich, A., Gorgonio, K. C.,

Pagno, R. T., & Will, N. C. (2020). Secure cloud storage with
client-side encryption using a trusted execution environment.
arXiv preprint arXiv:2003.04163. https://doi.org/10.48550/
arXiv.2003.04163

Qureshi, M. B., Qureshi, M. S., Tahir, S., Anwar, A., Hussain, S., Uddin, M.,
& Chen, C.-L. (2022). Encryption Techniques for Smart Systems
Data Security Offloaded to the Cloud. Symmetry, 14(4), 695.
https://doi.org/10.3390/sym14040695

Sabeerath K., & Manikandasaran S. Sundaram. (2024a). BTEDD:
Block-level tokens for efficient data deduplication in public
cloud infrastructures. The Scientific Temper, 15(03), 2507–2514.

https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.16
Sabeerath K., & Manikandasaran S. Sundaram. (2024b). ESPoW:

Efficient and secured proof of ownership method to
enable authentic deduplicated data access in public cloud
storage. The Scientific Temper, 15(04), 3165–3172. https://doi.
org/10.58414/SCIENTIFICTEMPER.2024.15.4.25

Selvaraj, R., & Sundaram, M. S. (2023a). ECM: Enhanced confidentiality
method to ensure the secure migration of data in VM to cloud
environment. The Scientific Temper, 14(03), 902–908. https://
doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.53

Selvaraj, R., & Sundari, M. S. (2023b). EAM: Enhanced authentication
method to ensure the authenticity and integrity of the
data in VM migration to the cloud environment. The
Scientific Temper, 14(01), 227–232. https://doi.org/10.58414/
SCIENTIFICTEMPER.2023.14.1.29

