Advanced hybrid feature selection techniques for analyzing the relationship between 25-OHD and TSH
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.08Keywords:
Vitamin D & thyroid, Feature selection techniques, Filter and wrapper methods, Hybrid feature selection techniques.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The process of selecting essential features from the high-dimensional datasets is a crucial task while handling biological data. It is not just about choosing the right features but also ensuring that the selected features consistently perform well across different datasets or under varying conditions. The selection of features is crucial for the development of machine learning algorithm, as it influences the model’s characteristics and its connection to physiological processes, which is essential in the healthcare sector for identifying illness states with minimal data. The present study is primarily concerned with addressing the challenge of finding the features which are highly correlated with the TSH (Thyroid Simulating Hormone) from the thyroid datasets, since TSH has been regarded as a primary cause of many ailments. It also tries to find the impact of Vitamin D (25OHD) on TSH. By reducing data dimensions using feature selection techniques, performance and accuracy were improved [1]. Using feature selection algorithms for healthcare problems can reduce diagnosis costs, thereby enhancing healthcare's ability to accurately and promptly identify diseases [2]. This work developed two hybrid Feature Selection Techniques (FST - CorrRecursive Feature Selection (CRFS) and RanChi Ensemble Selection (RCES)), combining the specialties of filter and wrapper methods for identifying the influence of Vitamin D and other features on thyroid. Other existing feature selection methods have also been attempted. The findings demonstrated that, when compared to other approaches, our proposed CRFS and RCES techniques produced superior outcomes.Abstract
How to Cite
Downloads
Similar Articles
- R. Chandran, J. Selvam, Evaluating the impact of MOOC participation on skill development in autonomous engineering colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Anju Bhatnagar, Assessment of antioxidant activity and phytochemical screening in leaf extract of Andrographis paniculate (Burm. f.) nees , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, Inclusive education for children with learning difficulties in Mauritius: An analytical study among select stakeholders , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Gomathi P, Deena Rose D, Sampath Kumar R, Sathya Priya M, Dinesh S, Ramarao M, Computer vision for unmanned aerial vehicles in agriculture: applications, challenges, and opportunities , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V.Samuthira Pandi, B. R. Senthil kumar, M Anusuya, Annu Dagar, Synthesis and characterization of ZnO, ZnO doped Ag2O nanoparticles and its photocatalytic activity , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Santosh Kumar Sahu, B. R. Senthil kumar, Y. Aboobucker parvez, Ashish Verma, Assessment of noise levels by using noise prediction modeling , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- N Sasirekha, Jayakumar Karuppaiah, Yuvaraja Thangavel, KG Parthiban , Classification of mammograms by breast density , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Prabu Gopal, M. Jeyaseelan, Familial support of rural elderly in indian family system: A sociological analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 29 30 31 32 33 34 35 36 > >>
You may also start an advanced similarity search for this article.

