Performance of public transport appraisal using machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.43Keywords:
Public transport, Automatic passenger counting, Automatic vehicle location, Dwell times.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Public passenger transport holds immense significance in the overall transportation system. Forecasting the movement of public transport has emerged as a crucial problem in transport planning due to its practical implications. Recently, there has been a lot of significant attention in intelligent transportation systems (ITS), introducing various advancements and innovative applications to develop conditions for public transit that are safer, more effective, and fun. To fully leverage the potential of ITS applications and deal with road situations proactively, it becomes crucial to have a reliable method for predicting traffic flow. This opens up opportunities for ITS applications to anticipate and address potential challenges in advance. Enhancing the efficient functioning of public transport (PT) networks is a primary objective for urban area authorities, and the proliferation of location and communication devices has led to an abundance of operational data. Applying appropriate machine learning (ML) methods can help identify patterns in the data to improve the Schedule Plan. This research focuses on heterogeneous information that influences the prediction value, aiming to predict the required transport demand for specific routes and the arrival time of public transport. Utilizing DBSCAN clustering with the SARIMA Algorithm, real-time passenger demand forecasting is extensively promoted to enhance dynamic bus scheduling and management. Furthermore, this paper compares the accuracy of the proposed Prophet Model with traditional time series models like ARIMA and SARIMA. The aim is to provide precise and robust passenger demand predictions, enabling more effective planning and management of PT services.Abstract
How to Cite
Downloads
Similar Articles
- Deepika Tripathi, Dr Rishi Saxena, Dr Sippy Agarwal, Exploring the relationship between bacterial vaginosis and socioeconomic factors in Bundelkhand region: A cross-sectional study , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Manish K. Srivastava, Nidhi Kesari, Trust in Advertising: A Study of Indian Youth , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Shiv Kumar, Vinay Chauhan, Empowering Indian consumers to embrace electric vehicles through the unified theory of acceptance and use of technology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sohini Bhattacharyya, Ajay Kumar Harit, Manoj Singh, Urvashi Sharma, Chaitramayee Pradhan, Occurrence of Antibiotic Resistance in Lotic Ecosystems , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Brijesh Pathak, Estimation of Polonium Contents in Soil and Plants , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Selva Kumar D, Revisiting the challenges of disinvestment practices and central public sector enterprises (CPSEs): Indian empirical evidence , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vaibhav, Raj K Tiwari, Low power three-stage OTA using reverse nested frequency compensation without nulling resistor , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.