A green inventory model for deteriorating items while producing overtime with nonlinear cost and stock dependent demand
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.1.09Keywords:
Green Inventory Model, nonlinear cost, stock dependent demand, deterioration items, opportunity cost, emission cost.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Carbon emission alludes to the release of greenhouse gases into the atmosphere and the land or water as a result of human activities. These emissions are cause of the climate change, biodiversity loss, global warming and the degradation of ecosystems which affects our human health and environment. To overcome this problem, this study presents a green inventory model for deteriorating items while producing overtime with nonlinear cost and stock dependent demand. In this paper, the Production process allows for overtime operations with the nonlinear costs and the demand is influenced by the inventory level. The mathematical formulation is designed to optimize inventory management and to develop an ecofriendly model for the deteriorating items. The model was extended with two new costs that are Opportunity cost and Emission cost. To evaluate this green inventory model a numerical example was examined. The results are discussed with different values of the variables. As the final outcome of this model, the gross cost was determined for environmental benefits. Abstract
How to Cite
Downloads
Similar Articles
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Anil Kumar, Aditya Kumar, Synthesis, spectral characterization and antimicrobial effect of Cu(II) complexes of schiff Base Ligand, N-(3,4- dimethoxybenzylidene)-3-aminopyridine (DMBAP) Derived from 3,4-dimethoxybenzaldehyde and 3-aminopyridine , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Jivesh Jha, Sonia D Sharma, Role of law to combat ecological imbalance in Nepal , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Indrajeet Mishra, Estimation of the covalent binding parameters and the ground state wave functions in complexes doped with vanadyl ion , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Dadhaniya Deepa Karshanbhai, Nilofar Bhatti, Bioremediation of Textile Dyes Using Native Microorganisms: Sustainable Microbiological Approaches , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Jadhav Girish Vasantrao, Chirag Patel, AT&C and non-technical loss reduction in smart grid using smart metering with AI techniques , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Ashoke D. Maliki, Taiwo A. Muritala, Saji George, Frank A. Ogedengbe, Impact of project financiers’ strategies on de-risking infrastructural projects: A conceptual review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Moyliev Gayrat, Yunuskhodjaev Akhmadkhodja, Saidov Saidamir, Babakhanov Otabek, Mirsultanov Jakhongir, To study references and analysis of an experimental model for skin burns in rats , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Nalini S, Ritha W, Inventory model considering trade discounts and scrap disposal with sustainability , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Nalini S., Ritha W, Sustainable inventory model with environmental factors using permissible delay in payments , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Saarumathi R, Ritha W, Impregnable inventory stewardship for a closed loop supply chain besides energy usage, defective production and green investment manoeuvring pentagonal fuzzy number , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Vinodini R, Ritha W, The economic order quantity model for sustainable green inventory considers deterioration impact on the real-time replacement and various reorder points with imperfect quality items , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Saarumathi R, Ritha W, Conglomerate Charge and Merchandise Swayed Inventory Model for Fragile Vendibles , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Modenisha U, Ritha W, A mathematical model for sustainable landfill allocation and waste management , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Vinodini R, Ritha W, Sasitharan Nagapan, The green inventory model for sustainable environment that includes degrading products and backordering with integration of environmental cost , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper

