Enhancing IoT blockchain scalability through the eepos consensus algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.02Keywords:
Blockchain, Consensus Algorithm, EePoS, Energy Efficiency, IoT, Proof of Stake.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The integration of blockchain technology with the Internet of Things (IoT) introduces significant scalability, energy efficiency, and security challenges, particularly when using traditional consensus mechanisms like Proof of Work (PoW). IoT networks generate vast amounts of data while operating under resource constraints, necessitating the development of consensus algorithms that balance energy efficiency, transaction throughput, and security. Addressing these challenges is critical for the sustainable adoption of blockchain in IoT ecosystems. This research aims to enhance blockchain scalability and performance in IoT environments through the development of the Enhanced Efficient Proof of Stake (EePoS) consensus algorithm. The objective is to provide a framework that optimizes validator selection, minimizes energy consumption, and ensures robust security against common blockchain threats. The proposed method employs a multi-layered architecture, selective validation, and a behavior-aware penalty-reward system to ensure efficient consensus. Key security metrics, including Probability of Successful Attack (PSA) and Forking Rate (FR), were evaluated to demonstrate the algorithm’s resilience. EePoS reduces PSA by dynamically adjusting validator selection based on stake, behavior, and transaction load while decreasing FR through cluster-based voting and hierarchical aggregation. Experimental results demonstrated 20% lower PSA, 30% reduced FR, and 8% faster consensus time compared to ePoS. Throughput improved to 296 TPS while reducing CPU and memory utilization, ensuring robust performance for resource-constrained IoT networks. The novelty of this work lies in the tailored enhancements to the PoS framework, specifically designed for IoT constraints, making EePoS a scalable, energy-efficient, and secure solution for IoT blockchain integration.Abstract
How to Cite
Downloads
Similar Articles
- Shashank Suman, Prashant Kumar, Seasonal Estimation in Primary Productivity of Akilpur Lake in Dighwara, Saran (Bihar) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Gourav Kalra, Arun Kumar Gupta, Multi-response Optimization of Machining Parameters in Inconel 718 End Milling Process Through RSM-MOGA , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Shapali Devi, Sadguru Prakash, Ravindra Pratap Singh, Rahul Singh, Polylactic Acid: A Bio-Based Polymer as an Emerging Substitute for Plastics , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Lavkush Pandey, Trilokinath, Convergence of the Method of False Position , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Enthalpy During Complex Formation of Mn(II), Ni(II), Cd(II) and Hg(II) with p-fluorobenzoylthioacetophenone , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Pratibha Baluni, Priya Kathait, Pankaj Bahuguna, C. B. Kotnala, Rajesh Rayal, Analysis of Riparian Vegetation Diversity at Khanda Gad Stream, Garhwal Himalaya, Uttarakhand, India , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Kumbhlesh Kamal Rana, Rajesh Rayal, K.P. Chamoli, Pankaj Bahuguna, Pratibha Baluni, The Riparian Vegetation has Effects on the Faunal Diversity , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rahul Maurya, Thirupataiah B, Lakshminarayana Misro, Thulasi R, Effect of the Solvent Polarity and Temperature in the Isolation of Pure Andrographolide from Andrographis paniculata , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Kumari Sandhiya, Ashwani Pandey, Ruchi Sharma, Kaneez Fatima, Rukhsar Parveen, Naveen Gaurav, Assessment of Phytochemical and Antimicrobial Activity of Withania somnifera (Ashwagandha) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 17 18 19 20 21 22 23 24 25 26 > >>
You may also start an advanced similarity search for this article.

