An encryption and decryption of phonetic alphabets using signed graphs
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.33Keywords:
Encryption, Decryption, Signed Graph, Eigenvalues, EigenvectorsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Indeed, in signed graphs, the weights on the edges can be both positive and negative; this will provide a solid representation and manipulation framework for complicated relationships among phonetic symbols. Encryption and decryption of phonetic alphabets pose a number of special challenges and opportunities. This paper introduces a novel approach utilizing the eigenvalues and eigenvectors of signed graphs to develop more secure and efficient methods of encoding phonetic alphabets. Presented is a new cryptographic scheme; consider a mapping from phonetic alphabets onto a signed graph. Encryption should be carried out by means of structure-changing transformations of the latter, which leave intact the integrity of the information encoded. This approach allows for secure, invertible transformations to resist typical cryptographic attacks. Here, the decryption algorithm restores the encrypted graph back to the original phonetic symbols by systematically going through steps opposite to that taken during encryption. The proposal of signed graphs in the processes of phonetic alphabet encryption and decryption opens new frontiers of cryptographic practices, which have useful implications for secure communication systems and data protection.Abstract
How to Cite
Downloads
Similar Articles
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Enhanced Block Chain Financial Transaction Security Using Chain Link Smart Agreement based Secure Elliptic Curve Cryptography , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- N. Ruba, A. S. A. Khadir, Session password Blum–Goldwasser cryptography based user three layer authentication for secured financial transaction , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Manpreet Kaur, Shweta Mishra, A smart grid data privacy-preserving aggregation approach with authentication , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S.G. Sonchhatra, D. D. Pandya, T. M. Chhaya, Sum perfect cube labeling of graphs , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kurubara Amaresh, M. S. Ganachari, Revanasiddappa Devarinti , Enhancing participant understanding and ethical considerations in clinical trial biospecimen research: Insights from an oncology setting in India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Balamurugan, A. Bharathiraja, An enhanced hybrid GCNN-MHA-GRU approach for symptom-to-medicine recommendation by utilizing textual analysis of customer reviews , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sharayu Mirasdar, Mangesh Bedekar, Knowledge graphs for NLP: A comprehensive analysis , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
You may also start an advanced similarity search for this article.

