Bioremediation of Textile Dyes Using Native Microorganisms: Sustainable Microbiological Approaches
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.05Keywords:
Bioremediation, Textile dyes, Native microorganisms, Biosorption, Enzymatic degradation, Wastewater treatment, Environmental sustainability, Green technology.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Significant environmental difficulties are posed by the textile industry's heavy reliance on synthetic dyes. Dye pollutants in wastewater are detrimental and long-lasting, which is why they create these issues. Traditional approaches to treating textile effluents are ineffective in decomposing complex color compounds, and they can be prohibitively costly. To further the area of bioremediation as an ecologically and financially responsible option, this research investigates the possibility of naturally occurring microbes degrading and cleaning textile dyes. The ability of native fungi, bacteria, and algae to degrade various color chemicals through enzymes has demonstrated promise in their isolation from polluted settings. This study delves into the ways these microbes manage to repair hues. Oxidative pathways, biosorption, and enzymatic degradation are all thoroughly described. In addition, we look at the scalability and practicability of microbiological approaches in bioreactors, specifically looking at how these techniques may be used to treat industrial wastewater. Green technology, which seeks to lessen industrial waste and safeguard the environment, is a rapidly expanding field, and the results contribute to it.Abstract
How to Cite
Downloads
Similar Articles
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Manikant Tripathi, Sukriti Pathak, Ranjan Singh, Pankaj Singh, Pradeep K. Singh, Nivedita Prasad, Sadanand Maurya, Awadhesh Kumar Shukla, Adsorptive remediation of hexavalent chromium using agro-waste rice husk: Optimization of process parameters and functional groups characterization using FTIR analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Neeru Garg, B.R. Jaipal, Harshvardhan Singh, Impacts of anthropogenic activities on the behavior of Indian fox (Vulpes bengalensis) in the Thar desert , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Nitu Y. Wadkar, Sneha A. Irole, Sayali S. Kondar, Kalyani Joshi, The idea of mahavisha-upvisha shodhan in agadtantra: The ancient Indian knowledge system , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.

