An enhanced support vector machine bbased multiclass classification method for crop prediction
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.30Keywords:
Crop type classification, Multiclass, Support vector machine.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Crop type classification is a fundamental task in precision agriculture, enabling informed decision-making for crop management and resource allocation. Support vector machines (SVMs) have emerged as robust and effective tools for multiclass classification tasks. This study explores the application of SVM-based multiclass classification techniques to accurately categorize various crop types based on remote sensing data. The SVM algorithm is employed to create decision boundaries that maximize the margin between different crop classes while minimizing classification errors. To enhance classification performance, various kernel functions such as linear, polynomial, and radial basis functions are evaluated to capture complex relationships within the data. The proposed SVM-based approach is compared with other commonly used classification methods to assess its superiority in terms of accuracy, precision, recall, and F1 score.Abstract
How to Cite
Downloads
Similar Articles
- B. Nivedetha, Water Quality Prediction using AI and ML Algorithms , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Desai Vishesh, Ritesh Patel, Assessing the influence of tax refunds and incentives on personal tax Reporting: A qualitative perspective , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Multi-objective Solid Green Trans-shipment Problem for Cold Chain Logistics under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Ritu Jain, Ritesh Tiwari, Shailendra Kumar, Ajay Kumar Shukla, Manish Kumar, Awadhesh Kumar Shukla, Description of Medicinal Herb, Perfume Ginger: Hedychium spicatum (Zingiberales: Zingiberaceae) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Gomathi P, Deena Rose D, Sampath Kumar R, Sathya Priya M, Dinesh S, Ramarao M, Computer vision for unmanned aerial vehicles in agriculture: applications, challenges, and opportunities , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sujay Bhalchandra, Nilesh D. Shinde, An exploratory study of factors influencing manufacturer-dealer relationship in Indian automobile industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Priya Rajwade, Alka Bansal, A study of the perceptions of teachers towards a holistic approach in teaching in CBSE board schools in the context of NEP 2020 at the foundational and preparatory stages , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Mallamma V. Reddy, Sachhidanand Sidramappa, Digitization and Recognition of Kannada Inscription Dynasty , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Ritika Goyal, Payal Thakur, Influence of Entrepreneurial Characteristics on the Performance of MSMEs in Gautam Buddha Nagar , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- P. K. MISHRA, S. K. SHARAN, M. K. SINHA, D. CHAKRAVORTY, DETERMINATION OF TEMPERATURE SENSITIVE DIAPAUSE TERMINATION STATE OF DABA TRIVOLTINE ECORACE OF ANTHERAEA MYLITTA DRURY , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
<< < 23 24 25 26 27 28 29 30 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper

