A literature review on the information literacy competency among scholars of co-education colleges and women’s colleges
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.31Keywords:
Information literacy competency, Information literacy standards and models, Co-education institutions, Research scholarsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This literature review investigates information literacy competency (ILC) among scholars in coeducational and women’s colleges, exploring the disparities, influencing factors, and educational impacts within these distinct academic settings. Information literacy, a critical skill for navigating the digital era, empowers students to evaluate, access, and utilize information effectively. This review synthesizes findings from diverse studies, comparing ILC levels between scholars in coeducational and women’s colleges and considering variables such as academic discipline, institutional resources, and the pedagogical environment. Research indicates that while coeducational institutions provide a broader range of resources and peer interactions, women’s colleges often emphasize collaborative and inclusive pedagogies that may enhance ILC. However, disparities in competency levels persist due to variations in information literacy training and institutional support structures. This review identifies key areas where ILC training could be improved, particularly through targeted interventions tailored to the needs of each educational setting. The findings underscore the need for comprehensive information literacy programs to equip scholars with essential competencies, ultimately fostering academic success and lifelong learning across diverse educational contexts.Abstract
How to Cite
Downloads
Similar Articles
- Vandana, Ambrish Pandey, Comparative analysis of print contrast of hybrid modulated digitally modulated screening on different grades of paper , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Atal Bihari Bajpai, Nirmala Koranga, Naina Srivastava, Avadhesh Kumar Koshal, Krishan Pal Singh Rana, Diversity of Wild Edible Plants in the Kotla Valley in Uttarkashi, Uttarakhand, India , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Thilagavathi K, Thankamani K., P. Shunmugapriya, D. Prema, Navigating fake reviews in online marketing: Innovative strategies for authenticity and trust in the digital age , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Priya Tiwari, Bharat Kasar, Vibhu Tripathi, Decoding Investor’s behavior in tax saving mutual fund: A multi-item scale for evaluating investors’ category , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Gomathi Ramalingam, Logeswari S, M. D. Kumar, Manjula Prabakaran, Neerav Nishant, Syed A. Ahmed, Machine learning classifiers to predict the quality of semantic web queries , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Anita Yadav, Neerja Kapoor, Shivji Malviya, Sandeep K. Malhotra, COVID-19 Pandemic and the Global Vaccine Strategy , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Kurubara Amaresh, M. S. Ganachari, Revanasiddappa Devarinti , Enhancing participant understanding and ethical considerations in clinical trial biospecimen research: Insights from an oncology setting in India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.