An efficient key establishment for pervasive healthcare monitoring
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.28Keywords:
Authentication, Cryptanalysis, Secure healthcare systems, Healthcare data security, Key establishment, Security, IoT, Machine learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Health is one of the issues that present more challenges in the world. These challenges not only come from the requirements of the region itself yet in addition result from outside conditions that impact individuals’ health conditions and access to therapeutic administrations. To augment the security strength of real-time healthcare applications in the IoT environment, a novel framework, namely, an Enhanced and IoT-based medical healthcare security scheme (EIMSS), has been proposed in this chapter. The proposed EIMSS adapts the AUP authentication technique proposed in the previous chapter for authentication while transferring the patient’s data. The proposed EIMSS approach offers flexible services to aged people like confidentiality, integrity, and authentication for protecting their vital biological and medical data. The simulation results, analysis and comparison confirm that the proposed EIMSS outperforms existing protocols with improved security strength.Abstract
How to Cite
Downloads
Similar Articles
- Vijetna Singh, Alka Thakur, ECOLOGICAL ENGINEERING OF MICROALGAE FOR ENHANCED ENERGY PRODUCTION , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Anurag Tripathi, Shri Prakash, Prem Narayan Tripathi, Impact of SARS-CoV-2 (COVID-19) on the Nervous System: A Critical Review , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Neha Saini, Pallavi Upadhyay, Naitik Bhardwaj, Indra Rautela, Ashmita Bhatt, Nishima Sharma, Jyoti Barthwal, Prity Kumari, Naveen Gaurav, Establishment of in vitro Shoot Induction and an Evaluation of Antioxidant and Phytochemical Properties of Mucuna pruriens , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Prempal ., R.B. Sharma, A Severe Fruit Rot In Market , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- L. K. Mishra, A. P. Singh, AGE AND CREATIVITY: EFFECT OF CHRONOLOGICAL AGE ON MANAGER’S CREATIVITY , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Raju Prasad Singh, R.K. Verma, Study of Josephson Effect Between Bose Condensate , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Preeti Gupta, Shalie Malik, Photoperiodic Supervision and Adaptability in Avian System , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- P. Susai Raj, A. Edward William Benjamin, Evaluating the effectiveness of academic resilience intervention for at-risk students at higher secondary level , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Venkatesh R, A study on women empowerment by enhancing saving capabilities – through self-help groups , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 27 28 29 30 31 32 33 34 35 36 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper