Trust aware clustering approach for the detection of malicious nodes in the WSN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.21Keywords:
Wireless sensor networks, Clustering approach, Low-energy adaptive clustering hierarchy, Malicious node detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Wireless sensor networks (WSNs) are pivotal in a range of applications such as environmental monitoring, healthcare, and defense. However, their decentralized and resource-constrained nature makes them vulnerable to various security threats, particularly from malicious nodes that can disrupt the network’s functionality. To address this issue, this paper proposes a novel trust aware clustering (LEACH) approach integrated with an optimization-based technique for the detection of malicious nodes in WSNs. The proposed model leverages the low-energy adaptive clustering hierarchy (LEACH) protocol for efficient clustering and energy management while incorporating a trust-based mechanism to evaluate the behavior of nodes. Additionally, an optimization algorithm is employed to enhance the accuracy of malicious node detection and improve the overall network performance. The trust model dynamically updates based on node interactions, ensuring that compromised nodes are detected and isolated promptly. Simulation results demonstrate the efficacy of the proposed approach in terms of increased detection accuracy, reduced energy consumption, and prolonged network lifetime, making it a robust solution for securing WSNs against malicious attacks.Abstract
How to Cite
Downloads
Similar Articles
- Swetha Rajkumar, Subasree Palanisamy, Online detection and diagnosis of sensor faults for a non-linear system , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Prince Williams, Nilesh M. Patil, Allanki S. Rao, Chandra M. V. S. Akana, K. Soujanya, Aakansha M. Steele, Transformative effects of connectivity technologies on urban infrastructure and services in smart cities , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ratnakaram Raghavendra, Saila K. A. Reddy, Exploring cosmic ray energy loss mechanisms: Insights from Bethe-Bloch, modified bethe-bloch, and inverse compton scattering equations , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Subin M. Varghese, K. Aravinthan, A robust finger detection based sign language recognition using pattern recognition techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Kavitha V, Panneer Arokiaraj S., RPL-eSOA: Enhancing IoT network sustainability with RPL and enhanced sandpiper optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper