Improving the resource allocation with enhanced learning in wireless sensor networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.20Keywords:
Wireless senor network, Reinforcement learning, Deep learning, Support vector machine, Artificial neural network.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Efficient resource allocation is crucial for optimizing performance and extending the lifespan of wireless sensor networks (WSNs), which are often constrained by limited energy and bandwidth. This paper proposes an enhanced learning approach (ELA) for dynamic resource allocation in WSNs, leveraging augmented reinforcement learning to adaptively manage energy consumption, optimize routing, and schedule node activity. ELA integrates predictive feedback and real-time data from network states to refine policy decisions, enabling the network to maintain optimal performance under varying traffic loads and environmental conditions. Comparative analyses with existing methods, including deep neural networks (DNN), artificial neural networks (ANN), and support vector machines (SVM), demonstrate that ELA achieves superior results across multiple key metrics: energy consumption, network lifetime, packet delivery ratio, end-to-end delay, and throughput. Our findings indicate that ELA can sustain higher data reliability and throughput while minimizing latency and energy depletion, addressing fundamental challenges in WSNs. The proposed approach presents a scalable and adaptive solution that is well-suited for real-time and large-scale IoT applications, making it a valuable contribution to the advancement of intelligent resource management in WSNs.Abstract
How to Cite
Downloads
Similar Articles
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Manish Kumar, Nirupama Prakash, Saket Bihari, The role of public-private partnerships in facilitating international migration of semi-skilled workers–A case study of Varanasi and nearby districts , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Akram M. Elias, Rayan S. Hamed, Jiyar M. Naji, The impact of bone substitute combined with blood cell progenerators on the healing of surgical bony defects , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. Vnuchko, O. Batrymenko, О. Ткach, М. Karashchuk, M. Volkivskyi, Models of interaction between business and government in the conditions of the European integration course of Ukraine , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Santosh T. Karmani, Sachin V. V. Acharekar, The impact of online degree programs on employment opportunities in contemporary India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- P. L. Parmar, P. M. George, Study and optimization of process parameters for deformation machining stretching mode , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Faisal Alsanea, Challenging gender norms in parenting styles and their impact on children’s socialization and identity formation , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Geeta S. Desai, Santosh Hajare, Sangeeta Kharde, Evaluation of health practices among individuals with non-alcoholic fatty liver disease: A randomized controlled trial , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Gunjan Choudhary, Anupriya Roy Srivastava, Examining identity crisis in Samina Ali’s Madras on Rainy Days , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper