Distribution of virtual machines with SVM-FFDM approach in cloud computing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.13Keywords:
Cloud computing, Virtual machine, Support vector machine, Finest fit decreasing modifier.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Virtual machine (VM) distribution in cloud computing plays a pivotal role in optimizing resource allocation and improving overall system performance. This study proposes a novel approach for efficient VM distribution using a combination of support vector machine (SVM) and the finest fit decreasing modifier (FFDM) algorithm. SVM is employed to classify and predict resource utilization patterns, ensuring that VMs are allocated based on predicted workloads. The FFDM algorithm, a modified version of the traditional first fit decreasing (FFD) algorithm, is then applied to optimize the packing of VMs onto physical servers by minimizing resource wastage and enhancing load balancing. By integrating machine learning techniques with optimization algorithms, the proposed approach achieves a more effective VM allocation strategy, leading to improved system efficiency, reduced energy consumption, and enhanced scalability in cloud environments. Simulation results demonstrate the superior performance of the SVM-FFDM method compared to traditional VM allocation techniques in terms of resource utilization and operational cost.Abstract
How to Cite
Downloads
Similar Articles
- Faisal Alsanea, Challenging gender norms in parenting styles and their impact on children’s socialization and identity formation , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Prakash Lakhani, Premasish Roy, Souren Koner, Deepa Nair, D. Patil, Mona Sinha, Exploring the influence of work-life balance on employee engagement in Mumbai’s real estate industry , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Mohit, Rishi Chaudhry, Exploring the landscape of brand extensions: A bibliometric analysis of scholarly trends and insights , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Neha Verma, Beyond likes & clicks: Empowering role of social media marketing in value creation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sudheer Choudari, K. Rajasekhar, Ch. Sudheer, Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Prince Williams, Nilesh M. Patil, Allanki S. Rao, Chandra M. V. S. Akana, K. Soujanya, Aakansha M. Steele, Transformative effects of connectivity technologies on urban infrastructure and services in smart cities , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ramya Singh, Archana Sharma, Nimit Gupta, Nursing on the edge: An empirical exploration of gig workers in healthcare and the unseen impacts on the nursing profession , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper