Enhanced regression method for weather forecasting
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.18Keywords:
Weather forecasting, Light gradient boosting machine, Regression, Differential evolution.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Weather prediction is gaining popularity very rapidly in the current era of artificial intelligence and Technologies. It is essential to predict the temperature of the weather for some time. Traditionally, weather predictions are performed with the help of large complex models of physics, which utilize different atmospheric conditions over a long period of time. These conditions are often unstable because of perturbations of the weather system, causing the models to provide inaccurate forecasts. The models are generally run on hundreds of nodes in a large high-performance computing (HPC) environment, which consumes a large amount of energy. In this paper, LightGBM Regression parameters are tuned by using an optimization technique. Differential evolution (DE) is used to optimize the LightGBM regressor for estimating and forecasting the weather in the fore coming days.Abstract
How to Cite
Downloads
Similar Articles
- Neha Saini, Pallavi Upadhyay, Naitik Bhardwaj, Indra Rautela, Ashmita Bhatt, Nishima Sharma, Jyoti Barthwal, Prity Kumari, Naveen Gaurav, Establishment of in vitro Shoot Induction and an Evaluation of Antioxidant and Phytochemical Properties of Mucuna pruriens , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Ahmed Mustefa, Validating the dairy marketing performance of Mizan-Aman town, Bench-Sheko zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- M. Yamunadevi, P. Ponmuthuramalingam, A review and analysis of deep learning methods for stock market prediction with variety of indicators , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- R. B. Ram, A. K. Gautam, Rubee Lata, STUDIES ON SURVEY, COLLECTION AND EVALUATION OF WATER CHESTNUT (TRAPA NATANS VAR. BISPINOSA ROXB.) UNDER SATHIAON BLOCK OF AZAMGARH DISTRICT OF UTTAR PRADESH , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Bhuvaneshwarri Ilango, A machine translation model for abstractive text summarization based on natural language processing , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Amala Deepa V., T. Lucia Agnes Beena, Enhancing data imputation in complex datasets using Lagrange polynomial interpolation and hot-deck fusion , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Desai Vishesh, Ritesh Patel, Assessing the influence of tax refunds and incentives on personal tax Reporting: A qualitative perspective , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Rahul, Naveen Sharma, Thermosolutal Instability of Couple Stress Rivlin Ericksen Ferromagnetic Fluid with Rotation, Magnetic and Variable Gravity Field in Porous Medium , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

