Optimization based energy aware scheduling in wireless sensor networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.10Keywords:
Wireless sensor network, Task scheduling, energy aware, optimization, Ant colony optimizationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In wireless sensor networks (WSNs), energy efficiency is a critical factor in extending network lifetime, particularly in applications involving multiple target tracking. This paper proposes a novel approach for sleep scheduling in WSNs using ant colony optimization (ACO) to achieve energy-aware scheduling while maintaining high tracking accuracy. The proposed method models the scheduling problem as an optimization task, where ACO is employed to dynamically adjust the sleep and active states of sensor nodes based on their energy levels and target detection requirements. By optimizing node activity, the algorithm minimizes energy consumption while ensuring continuous and reliable tracking of multiple targets. Experimental results demonstrate that the ACO-based scheduling approach significantly enhances network longevity and reduces energy depletion compared to traditional scheduling techniques without compromising tracking performance. This energy-aware solution is well-suited for real-time tracking applications in resource-constrained WSN environments, providing a balance between energy conservation and tracking precision.Abstract
How to Cite
Downloads
Similar Articles
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Dhara B. Makwana, Adwait Mevada, Diversity and Green Synthesis of Various Metal Nanoparticles (MNPs) , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Amol Garge, Monika Tripathi, Navigating the virtual frontier: Best practices for ERP implementation in the digital age , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Priscilla I, Jayasimman Lawrence, Enhanced Symmetric Cryptography Technique (ESCTGPU) for Secure Communication between the IoT Gateway and the public Cloud Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- J. Helan Shali Margret, N. Amsaveni, Application of Lotka’s law in Indian cytokine publications: A scientometric study based on web of science during 1998 TO 2022 , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Amir Asad, Siddiqui M. Asif, Mohommad Arif, Veena Pandey, ISOLATION AND SCREENING OF XYLANASE PRODUCING ASPERGILLUS SP FROM SOIL. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ranjeet Kaur, P N Tripathi, Comparative Study on SARS-CoV-2 Variants , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Dhruvina A Dabgar, Zankhana Pandit, Molecular Foundations of Life: An Integrated Study of Cell Biology and Genetics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- P. Vinnarasi, K. Menaka, Advanced hybrid feature selection techniques for analyzing the relationship between 25-OHD and TSH , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper

