
Abstract
In wireless sensor networks (WSNs), energy efficiency is a critical factor in extending network lifetime, particularly in applications 
involving multiple target tracking. This paper proposes a novel approach for sleep scheduling in WSNs using ant colony optimization 
(ACO) to achieve energy-aware scheduling while maintaining high tracking accuracy. The proposed method models the scheduling 
problem as an optimization task, where ACO is employed to dynamically adjust the sleep and active states of sensor nodes based on 
their energy levels and target detection requirements. By optimizing node activity, the algorithm minimizes energy consumption 
while ensuring continuous and reliable tracking of multiple targets. Experimental results demonstrate that the ACO-based scheduling 
approach significantly enhances network longevity and reduces energy depletion compared to traditional scheduling techniques 
without compromising tracking performance. This energy-aware solution is well-suited for real-time tracking applications in resource-
constrained WSN environments, providing a balance between energy conservation and tracking precision.
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Introduction
Wireless sensor networks (WSNs) are decentralized networks 
comprising numerous sensor nodes deployed in large 
geographical areas to monitor physical or environmental 
conditions such as temperature, sound, pollution levels, or 
motion. These networks are gaining significant attention 
in both industrial and research communities due to their 
diverse applications in healthcare, agriculture, military 
surveillance, smart cities, environmental monitoring, and 
more. A typical WSN consists of sensor nodes, base stations, 
and gateways that work together to collect, process, and 
transmit data. Despite the advantages and widespread 
use of WSNs, they face several challenges, with energy 
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consumption being one of the most critical issues. Since 
limited-capacity batteries usually power sensor nodes and 
are often deployed in remote or inaccessible locations, 
extending the network’s lifetime is paramount for ensuring 
its long-term functionality and reliability, Raja Basha, A. 
(2022), Jondhale, S. R., Maheswar, R., Lloret, J., Jondhale, S. 
R., Maheswar, R., & Lloret, J. (2022), Gulati, K., Boddu, R. S. 
K., Kapila, D., Bangare, S. L., Chandnani, N., & Saravanan, G. 
(2022), Adday, G. H., Subramaniam, S. K., Zukarnain, Z. A., & 
Samian, N. (2022).

To address the energy constraint, researchers have 
turned to various energy-aware scheduling techniques 
aimed at reducing energy consumption in WSNs. 
Scheduling, in this context, refers to the coordination 
of activities such as sensing, data transmission, and idle 
time management among the sensor nodes. The key 
objective is to optimize node operations so that energy 
use is minimized without compromising data accuracy, 
network coverage, or communication reliability. One of 
the most promising approaches to achieve this is through 
the use of optimization-based energy-aware scheduling 
techniques. These techniques aim to balance the trade-
offs between energy efficiency, data quality, and latency, 
ensuring that sensor nodes operate effectively over 
extended periods, Dhabliya, D., Soundararajan, R., Selvarasu, 
P., Balasubramaniam, M. S., Rajawat, A. S., Goyal, S. B., ... & 
Suciu, G. (2022).
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Energy Consumption Challenges In Wsns
The energy consumption challenge in WSNs arises 
primarily from the limited battery life of sensor nodes, 
which constrains the network’s operational lifetime. Once a 
sensor node’s battery is depleted, the node becomes non-
functional, which may lead to communication gaps and 
coverage holes in the network. Moreover, sensor nodes often 
operate in harsh or remote environments where recharging 
or replacing batteries is not feasible. This makes energy 
efficiency a critical design consideration for WSNs. Energy 
consumption in sensor nodes can be divided into three major 
categories: sensing, processing, and communication. Among 
these, communication is the most energy-intensive task as it 
involves transmitting data from nodes to base stations over 
long distances, Sadeq, A. S., Hassan, R., Sallehudin, H., Aman, 
A. H. M., & Ibrahim, A. H. (2022), Mukti, F. S., Junikhah, A., Putra, 
P. M. A., Soetedjo, A., & Krismanto, A. U. (2022), Hussein, S. M., 
López Ramos, J. A., & Ashir, A. M. (2022).

Furthermore, the power consumption in WSNs is 
significantly influenced by factors such as node density, 
network topology, data transmission frequency, and 
environmental conditions. High-density networks may 
experience overlapping communication signals, leading 
to increased interference and energy wastage. Moreover, 
the unpredictable nature of WSN environments, such as 
fluctuating environmental conditions or mobile sensor 
nodes, exacerbates the challenge of energy optimization, 
Razooqi, Y. S., & Al-Asfoor, M. (2022), Osamy, W., Khedr, A. M., 
Salim, A., Al Ali, A. I., & El-Sawy, A. A. (2022).

Given these challenges, there is a growing need 
for energy-efficient scheduling mechanisms that can 
dynamically adjust sensor node operations to conserve 
energy while maintaining essential network functionalities.

Optimization-Based Approaches for Energy-Aware 
Scheduling
Optimization techniques provide a robust framework for 
addressing the energy challenges in WSNs. Optimization-
based scheduling approaches aim to determine the best 
possible allocation of resources and scheduling of tasks to 
minimize energy consumption while meeting predefined 
performance metrics, such as coverage, connectivity, and 
data accuracy. Various optimization algorithms have been 
proposed, including heuristic algorithms, metaheuristic 
algorithms, and hybrid optimization techniques. These 
algorithms are designed to find near-optimal solutions 
to the complex, multi-objective optimization problem of 
energy-aware scheduling in WSNs, Li, C., & Chen, L. (2024), 
Chhabra, A., Sahana, S. K., Sani, N. S., Mohammadzadeh, A., 
& Omar, H. A. (2022).

Heuristic-Based Approaches
Heuristic methods, such as greedy algorithms and local 
search, are simple and fast techniques that provide 

suboptimal solutions by making decisions based on current 
conditions. These methods work well in small-scale WSNs but 
often fail to provide good results for large-scale networks due 
to the complexity of the scheduling problem, Akhtar, M. M., 
Ahamad, D., Shatat, A. S. A., & Abdalrahman, A. E. M. (2022).

Metaheuristic-Based Approaches
Metaheuristic algorithms, such as genetic algorithms (GA), 
particle swarm optimization (PSO), ant colony optimization 
(ACO), and Harris Hawks optimization (HHO), are widely used 
for energy-aware scheduling in WSNs. These algorithms 
employ a higher-level strategy to explore the solution space 
more effectively, often balancing between local and global 
search. Metaheuristics can provide near-optimal solutions 
for complex scheduling problems with large search spaces. 
For example, PSO is inspired by the collective behavior of 
bird flocking and fish schooling, where sensor nodes’ activity 
is scheduled to minimize overall energy consumption, 
Lakshmanna, K., Subramani, N., Alotaibi, Y., Alghamdi, S., 
Khalafand, O. I., & Nanda, A. K. (2022).

Hybrid Optimization Approaches
In many cases, a single optimization technique may not be 
sufficient to handle the complexity and dynamic nature 
of WSN environments. Hybrid optimization approaches 
combine two or more optimization algorithms to exploit 
the strengths of each method. For instance, a hybrid PSO 
and GA approach may be employed to benefit from PSO’s 
fast convergence and GA’s ability to escape local optima, 
leading to better energy-aware scheduling solutions, Lu, 
C., Zhou, J., Gao, L., Li, X., & Wang, J. (2024).

Energy-Aware Scheduling Mechanisms
Several energy-aware scheduling mechanisms have 
been proposed based on optimization techniques. These 
mechanisms typically aim to optimize different aspects 
of WSN operation, including sleep scheduling, data 
aggregation, and clustering.

Sleep Scheduling
One of the most common techniques for reducing energy 
consumption is sleep scheduling, where sensor nodes 
alternate between active and sleep states. Optimization 
algorithms can be used to determine the optimal sleep 
schedules that minimize energy consumption while 
maintaining network coverage and connectivity. For 
instance, ACO-based approaches can dynamically adjust 
the sleep schedules of sensor nodes to minimize redundant 
transmissions and energy wastage, Hameed, M. K., & Idrees, 
A. K. (2024).

Data Aggregation
Data aggregation techniques aim to reduce the number 
of data transmissions by combining data from multiple 
sensor nodes. By using optimization techniques, energy-
aware scheduling can identify the best aggregation points 
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and reduce the number of data transmissions, thereby 
saving energy. Metaheuristic algorithms like PSO or ACO 
are particularly effective in optimizing data aggregation 
routes and schedules.

Clustering
Clustering-based scheduling involves dividing the WSN 
into smaller clusters, where each cluster has a designated 
cluster head responsible for aggregating and transmitting 
data. Optimization algorithms can be employed to select 
energy-efficient cluster heads and balance the energy load 
among sensor nodes. Hybrid approaches such as combining 
ACO with Fuzzy Logic are often used to optimize cluster 
head selection and routing protocols, Abdulzahra, A. M. K., 
Al-Qurabat, A. K. M., & Abdulzahra, S. A. (2023).

Proposed Optimizations Based Energy-Aware 
Scheduling In Wsn
In wireless sensor networks, energy efficiency is a paramount 
concern due to the limited power supply of sensor nodes, 
which typically run on batteries. As replacing or recharging 
these batteries in remote or inaccessible environments is 
often impractical, maximizing the operational lifetime of 
WSNs becomes critical. One of the most effective strategies 
to address this challenge is sleep scheduling, which involves 
transitioning sensor nodes between active (awake) and 
inactive (sleep) states to conserve energy while maintaining 
essential network functionalities, such as coverage and 
communication.

A promising approach to energy-aware sleep scheduling 
in WSNs involves the use of optimization techniques, 
particularly ant colony optimization (ACO). ACO is a 
metaheuristic algorithm inspired by the foraging behavior of 
ants, which are capable of finding the shortest path to food 
sources using pheromone trails. This collective intelligence 
is applied in computational algorithms to solve complex 
optimization problems, such as determining optimal sleep 
schedules for sensor nodes in WSNs.

Sleep scheduling is a technique that aims to reduce 
energy consumption by putting certain sensor nodes 
into a low-power sleep mode when they are not required 
for sensing or communication tasks. The primary goal of 
energy-aware sleep scheduling is to ensure that only a 
subset of sensor nodes is active at any given time while the 
rest remain in sleep mode to conserve energy. This can be 
achieved while still maintaining adequate sensing coverage 
and communication between nodes, Nedham, W. B., & 
Al-Qurabat, A. K. M. (2023).

In WSNs, sleep scheduling involves three critical tasks:

Deciding which sensor nodes should be active or asleep
The nodes that are placed in the sleep state do not consume 
energy for communication or sensing, thereby saving 
power. The challenge lies in ensuring that even with some 

nodes asleep, the network can still monitor the environment 
effectively and maintain communication with the base station.

Maintaining sensing coverage
Even though some nodes are asleep, the active nodes must 
be arranged such that they cover the sensing area adequately. 
The goal is to minimize redundant coverage (overlapping 
sensing areas of multiple nodes) and energy waste.

Ensuring connectivity
The network must remain connected, ensuring that data 
from the active sensor nodes can still be transmitted to the 
base station. Thus, even with nodes in sleep mode, there 
must be a communication path between the active nodes 
and the base station.

Overview of Ant Colony Optimization (ACO)
ACO was first introduced by Marco Dorigo in the early 1990s 
and is based on the behavior of real ants in nature. In ACO, 
a group of artificial ants cooperates to find good solutions 
to combinatorial optimization problems by simulating the 
process of laying and following pheromone trails. The ants 
initially explore random paths, and as they find shorter or 
more efficient paths, they reinforce these routes with higher 
levels of pheromone. Over time, other ants are more likely 
to follow the reinforced paths, converging on an optimal or 
near-optimal solution, Banerjee, A., De, S. K., Majumder, K., 
Das, V., Giri, D., Shaw, R. N., & Ghosh, A. (2022).

In the context of WSNs, ACO is used to solve the 
problem of energy-aware sleep scheduling by finding 
the best schedule that minimizes energy consumption 
while maintaining network performance. Each “ant” in this 
scenario represents a potential solution, or a schedule of 
which sensor nodes should be active or asleep at a given 
time. The algorithm iteratively improves the schedule by 
evaluating the energy efficiency and coverage of each 
solution and updating the pheromone levels to favor better-
performing schedules, Wang, Z., Ding, H., Li, B., Bao, L., Yang, 
Z., & Liu, Q. (2022).

In the ACO-based approach to sleep scheduling in WSNs, 
the problem is modeled as a combinatorial optimization task, 
where the objective is to find an optimal or near-optimal 
schedule for sensor nodes. The ACO algorithm iteratively 
improves the sleep schedule based on energy consumption, 
network coverage, and communication connectivity.

Initialization
The algorithm starts by randomly selecting an initial set of 
sleep schedules, where some sensor nodes are designated 
as active and others as asleep. Each ant in the ACO algorithm 
represents a potential sleep schedule.

Pheromone Update and Evaluation
Each ant evaluates its current solution based on predefined 
criteria such as energy consumption, coverage, and 
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connectivity. The energy consumption is calculated by 
determining the number of active nodes and their respective 
power usage. Coverage is evaluated by checking whether 
the active nodes can collectively cover the entire target area, 
and connectivity is assessed by ensuring that the active 
nodes can communicate with the base station. Pheromone 
levels are updated based on the quality of the solution. 
Schedules that lead to lower energy consumption and better 
coverage are reinforced with more pheromones, making 
them more attractive for future ants to follow.

Solution Construction
After pheromone levels are updated, each ant constructs a 
new solution (sleep schedule) by probabilistically selecting 
which nodes should be active or asleep. The probability of 
selecting a particular node is influenced by the pheromone 
level associated with that node’s previous activity status, 
as well as heuristic information (such as the node’s residual 
energy or location in the network).

Exploration and Exploitation
The ACO algorithm balances exploration (discovering new, 
potentially better solutions) and exploitation (refining 
existing solutions). In early iterations, ants may explore a 
wide variety of schedules to find promising candidates. As 
the algorithm progresses, it focuses more on refining the 
best-performing schedules discovered so far, leading to 
convergence toward an optimal solution.

Convergence
The algorithm continues to iteratively construct new solutions, 
update pheromone levels, and refine the sleep schedules until 
it converges on a near-optimal solution. The final solution 
represents the sleep schedule that achieves the best trade-off 
between energy consumption and network performance.

Step-by-Step Procedure for ACO-Based Energy-Aware 
Sleep Scheduling
The ant colony optimization (ACO)-based energy-aware 
sleep scheduling approach in WSNs follows a systematic, 
iterative process designed to optimize the sleep and 
wake-up schedules of sensor nodes.

Step 1: Initialization

• Step 1.1: Parameter Setup
Initialize key parameters for the ACO algorithm, including:
• Number of ants (representing possible solutions).
• Number of iterations (the maximum cycles for 

convergence).
• Pheromone levels for each node (set to a small initial value).
• Pheromone evaporation rate and pheromone deposition 

rate.
• Heuristic information: Define parameters based on the 

specific WSN scenario, such as node energy levels, 
distance between nodes, or residual energy.

• Step 1.2: Initial Random Solution Construction
• Each ant constructs an initial solution by randomly 

assigning some sensor nodes to sleep or active states. 
This is done based on network requirements, such as 
coverage or communication constraints.

• The goal at this stage is to provide a starting set of 
possible sleep schedules for further exploration.

Step 2: Solution Construction (Path Generation by Ants)

• Step 2.1: For each ant
• Each ant (representing a possible schedule) selects 

which sensor nodes should be awake or asleep for the 
next time slot.

• The probability of each node being active or asleep is 
influenced by the pheromone level associated with that 
node and heuristic information. The formula guiding 
this selection is often based on a combination of 
pheromone strength and heuristic desirability.

• The selection rule can be described as follows: where 
 is the probability of selecting node j to be active 

or asleep in the solution,  is the pheromone level 
for node j.  is the heuristic value (such as residual 
energy or coverage contribution) for node j.  and  
are parameters controlling the relative influence of 
pheromone and heuristic values, respectively.

 

• Step 2.2: Heuristic Information
• Use factors such as residual energy levels, distance to the 

base station, or node importance (based on coverage) 
to guide decision-making.

• Nodes with higher residual energy may have a higher 
chance of being selected to stay awake to balance 
energy consumption across the network.

Step 3: Solution Evaluation

• Step 3.1: Energy Consumption Calculation
Calculate the total energy consumption of each ant’s solution 
(schedule) by summing the energy used by the active nodes 
during the time slot. This includes communication energy, 
sensing energy, and idle power consumption.

• Step 3.2: Coverage Evaluation
• Ensure that the active nodes provide adequate coverage 

of the monitored area. Evaluate the percentage of the 
area covered by the current set of active nodes and 
check if any coverage holes exist.

• This ensures that even though some nodes are in sleep 
mode, the network’s overall sensing capabilities are 
not compromised.

• Step 3.3: Connectivity Check
Ensure that the network remains connected during the 
scheduled period, allowing the active nodes to communicate 
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effectively with the base station or other nodes. This is typically 
done by evaluating the communication paths between active 
nodes and ensuring there is no network partition.

• Step 3.4: Fitness Function Calculation
Define a fitness function that combines energy consumption, 
coverage, and connectivity. The goal is to minimize energy 
consumption while maximizing coverage and ensuring 
connectivity. A common fitness function might look like: 
where  are weights that balance the importance of 
each factor. The term (1−Coverage) penalizes poor coverage 
and A penalty term is included for any loss of connectivity.

Step 4: Pheromone Update

• Step 4.1: Pheromone Evaporation
Apply pheromone evaporation to all nodes to reduce 
pheromone levels over time. This process prevents premature 
convergence to suboptimal solutions and encourages the 
exploration of new solutions. The pheromone evaporation 
rule is: where  is the pheromone level at time t,  is 
the pheromone evaporation rate, typically a small value 
between 0 and 1.

• Step 4.2: Pheromone Deposition
After evaporation, deposit pheromones along the paths 
(schedules) that yielded better solutions (lower energy 
consumption, better coverage, etc.). The amount of 
pheromone deposited is proportional to the quality of the 
solution, reinforcing better schedules and making them 
more likely to be selected by future ants. Where  is 
the amount of pheromone deposited, which is typically 
inversely proportional to the fitness score (i.e., better 
solutions receive more pheromones).

 

Step 5: Exploration and Exploitation Balance

• Step 5.1: Exploration
To avoid getting stuck in local optima, ensure that the 
ants explore new schedules by introducing randomness 
in the selection process. A small probability of choosing a 
less favorable node (based on pheromone levels) can help 
explore diverse solutions.

• Step 5.2: Exploitation
As the algorithm progresses and good solutions are found, 
ants increasingly favor nodes that have higher pheromone 
levels (indicating better performance in previous iterations). 
This ensures the refinement of the best solutions.

Step 6: Iterative Process

• Step 6.1: Repeat the Process
The process of solution construction, evaluation, and 

pheromone update is repeated for a predefined number of 
iterations or until the algorithm converges to a stable solution 
(i.e., no further significant improvements are observed).

Step 7: Convergence and Final Solution

• Step 7.1: Convergence
After a sufficient number of iterations, the algorithm 
converges to a near-optimal sleep schedule that balances 
energy consumption, coverage, and connectivity. The final 
solution represents the best schedule found by the ants 
throughout the optimization process.

• Step 7.2: Output the Best Schedule
The best schedule found is applied to the WSN, where sensor 
nodes transition between active and sleep states according to 
the optimized plan, thereby conserving energy while ensuring 
that the network’s operational requirements are met.

Result And Discussion

Simulation Environment
The proposed approach is implemented in a network 
simulator (NS2). It is a simulator that runs on discrete 
events and was developed at UC Berkeley. The object-
oriented programming style of C++ was utilized in the 
development of native script. The intended users of NS2 are 
academic institutions engaged in networking research and 
education. There is a natural fit between traffic evaluations, 
protocol design, and protocol comparisons. Collaboration 
is encouraged by the environment’s design. NS2 is a freely 
distributable program that is open-source. Use, maintenance, 
and expansion upon NS2 are commonplace in most R&D 
firms. Users of Windows, Linux, Free BSD, Solaris, and Mac 
OS X have a variety of versions between them. Since the 
mobile node is constantly moving, its X, Y, and Z coordinates 
are also constantly changing. There are two separate ways 
to relocate mobile nodes. The first allows you to define the 
starting and ending points of the node. Separate movement 
scenario files are typically used for this purpose. Using these 
APIs, you can configure the initial location and subsequent 
destinations of a mobile node. A node-movement-update 
is initiated in these processes whenever the node’s position 
at a given time needs to be known. The node’s speed and 
direction can be changed with the set command, or their 
distance can be requested by a nearby node.

Performance Analysis
The performance of the proposed ant colony based energy 
aware sleep scheduling (AC-EASS) approach with the existing 
techniques like particle swarm optimization (PSO), and 
genetic algorithm (GA) are evaluated with metrics like packet 
dropping ratio (in %), throughput (in mbps), packet delivery 
ratio (in %) and average energy consumption (in Joules).

Table 1 depicts the packet dropping ratio (in %) by the 
proposed AC-EASS approach, PSO, and GA.
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The data presented in Table 1 illustrates the packet dropping 
ratio for three different optimization approaches. Proposed 
AC-EASS consistently outperforms both PSO and GA in 
terms of packet dropping ratio across all tested node 
configurations. The packet dropping ratio for the AC-EASS 
approach starts at 1.235% with 80 nodes and gradually 
increases to 2.795% as the number of nodes rises to 200. In 
contrast, the PSO method exhibits a higher packet-dropping 
ratio, beginning at 2.678% for 80 nodes and increasing to 
4.702% at 200 nodes. Similarly, the GA approach shows 
the highest packet-dropping ratio, starting at 3.124% and 
reaching 5.201% with 200 nodes. The results indicate that as 
the network scales with an increasing number of nodes, the 
packet-dropping ratio increases for all methods. However, 
the Proposed AC-EASS method maintains a significantly 
lower packet-dropping ratio compared to PSO and GA, 
demonstrating its effectiveness in ensuring reliable packet 
delivery in wireless sensor networks. The performance 
trend emphasizes the advantages of the AC-EASS approach 
in optimizing energy-aware sleep scheduling, thereby 
reducing packet loss and improving overall network 
reliability, especially in dense network scenarios.

Table 2 depicts the throughput (in mbps) by the 
Proposed AC-EASS approach, PSO, and GA.

From Table 2, the proposed AC-EASS approach consistently 
demonstrates superior throughput compared to both PSO 
and GA. Starting with a throughput of 12.345 Mbps at 80 
nodes, the performance gradually declines to 9.432 Mbps 
as the number of nodes increases to 200. In comparison, 
the PSO method exhibits a lower throughput, beginning at 
10.567 Mbps for 80 nodes and decreasing to 6.789 Mbps for 
200 nodes. The GA approach shows the lowest throughput, 
starting at 9.876 Mbps and dropping to 5.987 Mbps by the 
time the network reaches 200 nodes. These results illustrate 
a clear trend where increasing the number of nodes leads to 
a reduction in throughput for all three techniques. However, 
the Proposed AC-EASS maintains a significantly higher 
throughput throughout the range of node configurations 
tested. The performance of the AC-EASS approach highlights 
its efficiency in managing network resources, ensuring that 

even as the network density increases, the throughput 
remains optimal compared to other techniques. This 
suggests that the AC-EASS is particularly well-suited for 
maintaining effective communication in dense wireless 
sensor networks, thereby enhancing the overall performance 
and reliability of the network.

Table 3 depicts the packet delivery ratio (in %) by the 
proposed AC-EASS approach, PSO, and GA. From Table 3,  
the proposed AC-EASS approach achieves the highest packet 
delivery ratios across all node configurations. Starting at 
98.765% with 80 nodes, the ratio gradually declines to 92.456% 
as the number of nodes increases to 200. This indicates that 
the AC-EASS approach effectively maintains high delivery 
rates, even as network density increases. In contrast, the PSO 
method shows a lower packet delivery ratio, beginning at 
95.432% for 80 nodes and decreasing to 87.123% by the time 
the network reaches 200 nodes. Similarly, the GA approach 
consistently exhibits the lowest packet delivery ratio, starting 
at 92.345% and falling to 83.456% at 200 nodes. These results 
highlight a clear trend where an increase in the number of 
nodes corresponds to a decrease in the packet delivery ratio 
for all methods. However, the Proposed AC-EASS consistently 
outperforms both PSO and GA, demonstrating its robustness 
in ensuring reliable packet delivery. The performance of the 
AC-EASS approach emphasizes its effectiveness in optimizing 
network resource utilization, which is crucial for maintaining 

Table 1: Packet dropping ratio (in %) by the proposed AC-EASS 
approach, PSO, and GA

Number of 
Nodes

Packet dropping ratio (in %)

Proposed AC-EASS PSO GA

80 1.235 2.678 3.124

100 1.542 3.045 3.531

120 1.878 3.411 3.945

140 2.149 3.789 4.213

160 2.368 4.102 4.558

180 2.582 4.401 4.879

200 2.795 4.702 5.201

Table 2: Throughput (in mbps) by the proposed AC-EASS approach, 
PSO, and GA

Number of 
nodes

Throughput (in mbps)

Proposed AC-EASS PSO GA

80 12.345 10.567 9.876

100 11.789 9.234 8.543

120 11.234 8.901 7.654

140 10.567 8.345 7.123

160 10.234 7.89 6.89

180 9.876 7.123 6.456

200 9.432 6.789 5.987

Table 3: Packet delivery ratio (in %) by the proposed AC-EASS 
approach, PSO, and GA

Number of 
nodes

Packet delivery ratio (in %)

Proposed AC-EASS PSO GA

80 98.765 95.432 92.345

100 97.456 93.876 90.123

120 96.234 92.345 88.789

140 95.789 90.567 87.654

160 94.345 89.432 85.987

180 93.123 88.765 84.321

200 92.456 87.123 83.456
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high levels of packet delivery in wireless sensor networks, 
particularly as the network scales. This indicates that the 
AC-EASS is a favorable solution for enhancing communication 
reliability in densely populated sensor networks.

Table 4 depicts the average energy consumption (in 
Joules) by the proposed AC-EASS approach, PSO, and GA.

From Table 4, the proposed AC-EASS approach 
consistently demonstrates the lowest average energy 
consumption across all node configurations. It starts at 
1.235 Joules with 80 nodes and increases to 2.795 Joules 
as the network expands to 200 nodes. This shows the 
AC-EASS method’s efficiency in managing energy resources 
effectively. In comparison, the PSO method exhibits higher 
energy consumption, beginning at 1.678 Joules for 80 nodes 
and rising to 3.234 Joules at 200 nodes. The GA approach 
has the highest energy consumption among the three 
techniques, starting at 1.910 Joules and reaching 3.489 
Joules with 200 nodes. The results indicate a general trend 
of increasing energy consumption as the number of nodes 
increases for all methods, reflecting the added demand 
placed on the network infrastructure. However, the Proposed 
AC-EASS maintains a significantly lower energy footprint 
compared to PSO and GA throughout the testing range. This 
performance highlights the effectiveness of the AC-EASS 
approach in minimizing energy usage, which is critical 
for extending the operational lifespan of wireless sensor 
networks. The results suggest that adopting the AC-EASS 
method can lead to more sustainable energy consumption 
practices, making it a preferable choice for energy-sensitive 
applications in wireless sensor environments.

Conclusion
In this study, we evaluated the performance of the proposed 
ant colony-based energy-aware sleep scheduling (AC-EASS) 
approach against two widely recognized optimization 
techniques: Particle swarm optimization (PSO) and genetic 
algorithm (GA). The analysis was conducted across various 
metrics, including packet dropping ratio, throughput, packet 
delivery ratio, and average energy consumption, using 
different configurations of nodes ranging from 80 to 200.

The results demonstrate that the AC-EASS approach 
significantly outperforms both PSO and GA in all evaluated 
metrics. It maintains a consistently lower packet-dropping 
ratio, higher throughput, and superior packet delivery ratio 
while also achieving lower average energy consumption. 
These findings highlight the effectiveness of the AC-EASS 
method in enhancing network reliability and performance, 
particularly in environments characterized by high node 
density.

As the number of nodes increases, all methods 
experience a decline in performance; however, the AC-EASS 
approach is notably more resilient, indicating its capability 
to manage network resources efficiently. The lower energy 
consumption associated with AC-EASS further underscores 
its suitability for applications where energy efficiency is 
paramount, ultimately contributing to the sustainability of 
wireless sensor networks.

In conclusion, the proposed AC-EASS approach not 
only enhances the operational efficiency of wireless sensor 
networks but also serves as a viable solution for energy-
aware applications. Future research could explore the 
scalability of the AC-EASS method in even larger network 
topologies and its integration with emerging technologies 
to further improve performance and adaptability in diverse 
real-world scenarios.
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