The socio-technical opportunities and threats of crowdsensing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.34Keywords:
Mobile crowd sensing, Machine learning, Privacy-preserving techniques, Sensitive information.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The exponential growth of mobile crowd sensing (MCS) has provided unparalleled opportunities to collect large-scale data through a network of mobile devices, empowering diverse applications in smart cities, healthcare, and environmental monitoring. However, the inherently participatory nature of MCS raises critical privacy concerns, as sensitive user information is often at risk of exposure. This literature review examines recent advancements in employing machine learning techniques to enhance privacy preservation in MCS frameworks. It explores methods such as federated learning, differential privacy, and encryption-enhanced neural networks that aim to minimize data leakage while maintaining model accuracy. Additionally, this review analyzes the efficacy and limitations of various privacy-preserving algorithms, particularly regarding their adaptability to different MCS contexts and their impact on computational overhead and communication efficiency. Through a comprehensive synthesis of current studies, this review highlights emerging trends, identifies research gaps, and suggests future directions for developing robust privacy-preserving machine learning models tailored to the unique demands of MCS systems.Abstract
How to Cite
Downloads
Similar Articles
- Bajeesh Balakrishnan, Swetha A. Parivara, E-HRM: Learning approaches, applications and the role of artificial intelligence , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- R. Prabhu, P. Archana, S. Anusooya, P. Anuradha, Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper