The socio-technical opportunities and threats of crowdsensing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.34Keywords:
Mobile crowd sensing, Machine learning, Privacy-preserving techniques, Sensitive information.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The exponential growth of mobile crowd sensing (MCS) has provided unparalleled opportunities to collect large-scale data through a network of mobile devices, empowering diverse applications in smart cities, healthcare, and environmental monitoring. However, the inherently participatory nature of MCS raises critical privacy concerns, as sensitive user information is often at risk of exposure. This literature review examines recent advancements in employing machine learning techniques to enhance privacy preservation in MCS frameworks. It explores methods such as federated learning, differential privacy, and encryption-enhanced neural networks that aim to minimize data leakage while maintaining model accuracy. Additionally, this review analyzes the efficacy and limitations of various privacy-preserving algorithms, particularly regarding their adaptability to different MCS contexts and their impact on computational overhead and communication efficiency. Through a comprehensive synthesis of current studies, this review highlights emerging trends, identifies research gaps, and suggests future directions for developing robust privacy-preserving machine learning models tailored to the unique demands of MCS systems.Abstract
How to Cite
Downloads
Similar Articles
- Atal Bihari Bajpai, Nirmala Koranga, Naina Srivastava, Avadhesh Kumar Koshal, Krishan Pal Singh Rana, Diversity of Wild Edible Plants in the Kotla Valley in Uttarkashi, Uttarakhand, India , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sweta Sain, Nilima Kumari, BN Tirpathi, ETHNOBOTANICAL STUDIES ON MEDICINAL PLANTS OF BANASTHALI REGION OF TONK DISTRICT, RAJASTHAN (INDIA) , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- P N TRIPATHI, EVALUATION OF SILKWORM RACES/HYBRIDS FOR CULTRE AT FARMERS’ LEVEL IN UTTAR PRADESH: APPROPRIATE TECHNIQUES , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Ashutosh Pathak, Review- Significant Advancements in Electrochemical Detection of Neuron-Specific Enolase , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- P. K. MISHRA, S. K. SHARAN, M. K. SINHA, D. CHAKRAVORTY, DETERMINATION OF TEMPERATURE SENSITIVE DIAPAUSE TERMINATION STATE OF DABA TRIVOLTINE ECORACE OF ANTHERAEA MYLITTA DRURY , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Richa Sharma, Shrutimita Mehta, Resilience in Resisting Spaces: Cross-Cultural Gender Identity in “Before We Visit the Goddess” , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 13 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper