The socio-technical opportunities and threats of crowdsensing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.34Keywords:
Mobile crowd sensing, Machine learning, Privacy-preserving techniques, Sensitive information.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The exponential growth of mobile crowd sensing (MCS) has provided unparalleled opportunities to collect large-scale data through a network of mobile devices, empowering diverse applications in smart cities, healthcare, and environmental monitoring. However, the inherently participatory nature of MCS raises critical privacy concerns, as sensitive user information is often at risk of exposure. This literature review examines recent advancements in employing machine learning techniques to enhance privacy preservation in MCS frameworks. It explores methods such as federated learning, differential privacy, and encryption-enhanced neural networks that aim to minimize data leakage while maintaining model accuracy. Additionally, this review analyzes the efficacy and limitations of various privacy-preserving algorithms, particularly regarding their adaptability to different MCS contexts and their impact on computational overhead and communication efficiency. Through a comprehensive synthesis of current studies, this review highlights emerging trends, identifies research gaps, and suggests future directions for developing robust privacy-preserving machine learning models tailored to the unique demands of MCS systems.Abstract
How to Cite
Downloads
Similar Articles
- R. Chandran, J. Selvam, Evaluating the impact of MOOC participation on skill development in autonomous engineering colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Maria D. Roopa, Nimitha John, Bayesian Optimization Phase I Design of Experiment Models , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- N.S.G. Ganesh, V Arulkumar, R. Lathamanju, Priscilla Joy , Energetic and highly reliable photovoltaic power source assisted water pump control system design using IoT , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Santhanalakshmi M, Ms Lakshana K, Ms Shahitya G M, Enhanced AES-256 cipher round algorithm for IoT applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- N. Suresh Kumar, S.N.Md. Assarudeen, Solving neutrosophic multi-objective linear fractional programming problem using central measures , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Nagarani, Amalraj P., Lakshay Phor, Nishank S. Pimple, Banashree Sen, Ramaprasad Maiti, Vikas S. Jadhav, Innovative technological advancements in solving real quadratic equations: Pioneering the frontier of mathematical innovation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Harjinderpal Singh Kalsi, To Monitor Real-time Temperature and Gas in an Underground Mine Wireless on an Android Mobile , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Anuj Kumar, R C Vishwakarma, K Sunita, Exploring Novel Panorama Within Plant-microbe Interface , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Maysam A. Khabisi, Azar B. Masoudzade, Neda F. Rad, On the effectiveness of receiving teacher and peer feedback as a mediator on Iranian English as a Foreign Language learners’ writing skill: Mobile-mediated vs. direct instruction , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper