Dynamic resource allocation with otpimization techniques for qos in cloud computing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.06Keywords:
Cloud computing, quality of service, Optimization techniques, Dynamic resource allocation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Ensuring the quality of service (QoS) in cloud computing environments requires efficient resource allocation mechanisms to manage dynamic workloads and meet user demands. This paper proposes a dynamic resource allocation strategy that integrates gravitational search optimization (GSO) with Harris Hawks optimization (HHO) to optimize resource utilization and maintain QoS in cloud infrastructures. The proposed hybrid approach combines the global search capabilities of GSO, inspired by the law of gravity, with the exploitation and exploration strategies of HHO, mimicking the cooperative hunting behavior of Harris hawks. This synergy enables adaptive and efficient allocation of computational resources based on real-time workload fluctuations, reducing response times, minimizing energy consumption, and preventing Service Level Agreement (SLA) violations. By predicting workload variations and adjusting resource allocation dynamically, the proposed method ensures higher reliability, scalability, and cost-effectiveness compared to traditional resource allocation techniques. Simulation results demonstrate that the GSO-HHO-based approach outperforms conventional optimization algorithms in balancing the trade-offs between performance and resource efficiency, making it a robust solution for maintaining QoS in cloud computing environments.Abstract
How to Cite
Downloads
Similar Articles
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Anil Kumar, Aditya Kumar, Synthesis, spectral characterization and antimicrobial effect of Cu(II) complexes of schiff Base Ligand, N-(3,4- dimethoxybenzylidene)-3-aminopyridine (DMBAP) Derived from 3,4-dimethoxybenzaldehyde and 3-aminopyridine , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Jivesh Jha, Sonia D Sharma, Role of law to combat ecological imbalance in Nepal , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Indrajeet Mishra, Estimation of the covalent binding parameters and the ground state wave functions in complexes doped with vanadyl ion , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Jyoti Kataria, Himanshi Rawat, Himani Tomar, Naveen Gaurav, Arun Kumar, Azo Dyes Degradation Approaches and Challenges: An Overview , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Vishnu Prasad C, Ramaprabha D, An assessment of growth indicators and intricacies of Udyam entities in the post-pandemic era , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Shyamkant M. Khonde, Lata Suresh, Globalization and the evolution of labor: Navigating new frontiers in the global economy , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 25 26 27 28 29 30 31 32 > >>
You may also start an advanced similarity search for this article.