Energy efficient routing with cluster approach in wireless networks – A literature review
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.35Keywords:
Wireless networks, Clustering approach, Efficient routing, Malicious attacks, energy efficientDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This literature review examines the cluster-based approaches in wireless networks, focusing on their effectiveness in conserving energy, enhancing routing efficiency, and improving network credibility. Wireless networks are increasingly employed in various applications, from internet of things (IoT) systems to mobile ad hoc networks, where energy efficiency is critical due to the limited battery life of devices. Cluster-based techniques group nodes into clusters to optimize resource utilization, facilitating energy conservation by enabling localized communication and reducing redundant transmissions. The review explores various clustering algorithms, such as low-energy adaptive clustering hierarchy (LEACH) and hybrid energy-efficient distributed clustering (HEED), highlighting their impact on network longevity and scalability. Additionally, the study addresses the challenges of maintaining robust routing protocols within clustered networks, emphasizing the importance of reliable data transmission and node credibility to mitigate risks from malicious attacks. By synthesizing current research findings, this review provides insights into the future directions of cluster-based strategies in wireless networks, suggesting potential enhancements to ensure efficient energy management and reliable network performance.Abstract
How to Cite
Downloads
Similar Articles
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Manikannan Palanivel, Alaudeen A, Pandiyan K. S, Sivaprakasam P, Hybrid fuzzy and fire fly algorithm-based MPPT controller for PV system using super lift boost converter , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rashika R. Singh, Nimish Gupta, G. R. Yadav, Scope of electric vehicles and the automobile industry in Indian perspective , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Akshay J., G. Mahesh Kumar, B. H. Manjunath, Optimizing durability of the thin white topping applying Taguchi method using desirability function , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Tarannum ., Anuja Pandey, Arti Rauthan, An evaluation of the impact of lean management practices on patients’ satisfaction at a small healthcare facility , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 19 20 21 22 23 24 25 26 27 28 > >>
You may also start an advanced similarity search for this article.

