AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.02Keywords:
AI-driven resource management, Virtual machines, Containers, Cloud computing, Performance optimization, Reinforcement learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The accurate calculation and comparison of performance in cloud environments are critical for optimizing resource utilization, particularly with the increasing use of virtual machines (VMs) and containers. This research proposes an AI-driven resource management framework that surpasses traditional machine learning algorithms by enabling real-time, autonomous performance optimization. While machine learning models provide predictive capabilities, they often require manual tuning and retraining for changing workloads. In contrast, the proposed AI-driven system, utilizing techniques such as reinforcement learning and adaptive optimization, continuously adjusts resource allocation based on real-time performance metrics like response time, throughput, and server utilization. This dynamic, self-improving system can respond to fluctuating workloads and network conditions without the need for constant retraining, offering superior flexibility and faster response times. The framework will be validated through extensive experiments across multi-cloud and edge computing environments, demonstrating its ability to significantly reduce calculation time while improving scalability and efficiency. Additionally, this approach incorporates enhanced security mechanisms, combining the isolation benefits of VMs with the lightweight efficiency of containers, providing a comprehensive, real-time solution for cloud-native applications.Abstract
How to Cite
Downloads
Similar Articles
- Sabeerath K, Manikandasaran S. Sundaram, ESPoW: Efficient and secured proof of ownership method to enable authentic deduplicated data access in public cloud storage , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Improving image quality assessment with enhanced denoising autoencoders and optimization methods , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Annalakshmi D., C. Jayanthi, An asymmetric key encryption and decryption model incorporating optimization techniques for enhanced security and efficiency , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Chandran, J. Selvam, Evaluating the impact of MOOC participation on skill development in autonomous engineering colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shripada Patil, Sandeep N. Jagdale, Prashant Kalshetti, Management education system in the 21st century: Challenges and opportunities , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- A. Anand, A. Nisha Jebaseeli, A comparative analysis of virtual machines and containers using queuing models , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Bhuvaneswari, A. Nisha Jebaseeli, Multi-model telecom churn prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper