AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.02Keywords:
AI-driven resource management, Virtual machines, Containers, Cloud computing, Performance optimization, Reinforcement learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The accurate calculation and comparison of performance in cloud environments are critical for optimizing resource utilization, particularly with the increasing use of virtual machines (VMs) and containers. This research proposes an AI-driven resource management framework that surpasses traditional machine learning algorithms by enabling real-time, autonomous performance optimization. While machine learning models provide predictive capabilities, they often require manual tuning and retraining for changing workloads. In contrast, the proposed AI-driven system, utilizing techniques such as reinforcement learning and adaptive optimization, continuously adjusts resource allocation based on real-time performance metrics like response time, throughput, and server utilization. This dynamic, self-improving system can respond to fluctuating workloads and network conditions without the need for constant retraining, offering superior flexibility and faster response times. The framework will be validated through extensive experiments across multi-cloud and edge computing environments, demonstrating its ability to significantly reduce calculation time while improving scalability and efficiency. Additionally, this approach incorporates enhanced security mechanisms, combining the isolation benefits of VMs with the lightweight efficiency of containers, providing a comprehensive, real-time solution for cloud-native applications.Abstract
How to Cite
Downloads
Similar Articles
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Bajeesh Balakrishnan, Swetha A. Parivara, E-HRM: Learning approaches, applications and the role of artificial intelligence , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Isreal Zewide, Wondwosen Wondimu, Melash Woldu, Kibnesh Admasu, Maize (Zea mays L.) Productivity as affected by different ratios of fertilizer (blended NPS) and inter row spacing at West Omo, South-West Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Seema Bhakuni, Application of artificial intelligence on human resource management in information technolgy industry in India , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing security of cloud using static IP techniques , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Isaac Asampana, Henry M. Akwetey, Ben Ocra, Jones Y. Nyame, Albert A. Akanferi, Hannah A. Tanye, Factors motivating the adoption of virtual learning environments in higher education. Is gender relevant? , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- A. Anand, A. Nisha Jebaseeli, A comparative analysis of virtual machines and containers using queuing models , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Bhuvaneswari, A. Nisha Jebaseeli, Multi-model telecom churn prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper