AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.02Keywords:
AI-driven resource management, Virtual machines, Containers, Cloud computing, Performance optimization, Reinforcement learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The accurate calculation and comparison of performance in cloud environments are critical for optimizing resource utilization, particularly with the increasing use of virtual machines (VMs) and containers. This research proposes an AI-driven resource management framework that surpasses traditional machine learning algorithms by enabling real-time, autonomous performance optimization. While machine learning models provide predictive capabilities, they often require manual tuning and retraining for changing workloads. In contrast, the proposed AI-driven system, utilizing techniques such as reinforcement learning and adaptive optimization, continuously adjusts resource allocation based on real-time performance metrics like response time, throughput, and server utilization. This dynamic, self-improving system can respond to fluctuating workloads and network conditions without the need for constant retraining, offering superior flexibility and faster response times. The framework will be validated through extensive experiments across multi-cloud and edge computing environments, demonstrating its ability to significantly reduce calculation time while improving scalability and efficiency. Additionally, this approach incorporates enhanced security mechanisms, combining the isolation benefits of VMs with the lightweight efficiency of containers, providing a comprehensive, real-time solution for cloud-native applications.Abstract
How to Cite
Downloads
Similar Articles
- Elizabeth Mize, A critical analysis of the continuing professional development of teachers in India through the lens of NEP 2020 , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Geeta S. Desai, Santosh Hajare, Sangeeta Kharde, Evaluation of health practices among individuals with non-alcoholic fatty liver disease: A randomized controlled trial , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Saarumathi R, Ritha W, Impregnable inventory stewardship for a closed loop supply chain besides energy usage, defective production and green investment manoeuvring pentagonal fuzzy number , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Saarumathi R, Ritha W, Conglomerate Charge and Merchandise Swayed Inventory Model for Fragile Vendibles , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Duyu Taaza, Sunil S. Jalalpure, Bhaskar Kurangi, In-vitro and in-silico analysis of hesperidin and naringin for metabolic syndrome management , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ruchira P Dudhrejiya, A critical analysis of power dynamics in Vijay Tendulkar's theatrical tapestry , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Virendra Chavda, Bhavesh J. Parmar, Urvi Zalavadia, Assessment of Omni channel retailing characteristics and its effect on consumer buying intention , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Appu A, Does shopping values influence users behavioral intentions? Empirical evidence from Chennai malls , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pooja Soni, Vikramaditya Dave, Sujit Kumar, Hemani Paliwal, A comparative study of AI-driven techno-economic analysis for grid-tied solar PV-fuel cell hybrid power systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 41 42 43 44 45 46 47 48 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- A. Anand, A. Nisha Jebaseeli, A comparative analysis of virtual machines and containers using queuing models , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Bhuvaneswari, A. Nisha Jebaseeli, Multi-model telecom churn prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper

