A comparative analysis of virtual machines and containers using queuing models
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.01Keywords:
Docker container, Virtual machines, Queuing model, Cloud computing.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Virtual machines (VMs) and containers are two prevalent technologies in cloud computing, each offering distinct advantages depending on the use case. VMs emulate entire operating systems, including kernels, while containers share the host OS kernel, making them lightweight and resource-efficient. This paper presents a novel method for comparing the performance of VMs and containers using queuing models. The proposed method not only provides a more accurate and flexible comparison but also significantly reduces the time required to calculate and perform performance metrics compared to traditional empirical benchmarking and simulation-based approaches. Through this comparison, the paper highlights the conditions under which containers outperform VMs, particularly in modern, cloud-native environments.Abstract
How to Cite
Downloads
Similar Articles
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Archana Verma, Role of artificial intelligence in evaluating autism spectrum disorder , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Tamilmani, K. Muthuramalingam, An enhanced support vector machine bbased multiclass classification method for crop prediction , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Monalisha Paul, Chaitali Kundu, Rudranil Bhowmik, Sanmoy Karmakar, Sandip K. Sinha, Nilanjana Chatterjee, The potential impression of fructo-oligosaccharides and zinc oxide nano composite against nicotine influenced cardiovascular changes , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Nagarani, Amalraj P., Lakshay Phor, Nishank S. Pimple, Banashree Sen, Ramaprasad Maiti, Vikas S. Jadhav, Innovative technological advancements in solving real quadratic equations: Pioneering the frontier of mathematical innovation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rajeev P. R., K. Aravinthan, A novel approach for metrics-based software defect prediction using genetic algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 18 19 20 21 22 23 24 25 26 27 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Bhuvaneswari, A. Nisha Jebaseeli, Multi-model telecom churn prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper

