Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.32Keywords:
Internet of Things, Cloud computing, Fog Computing, Fog-Cloud Paradigm, Cluster head selection algorithm, Network utilization, Energy consumptionDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Fog computing is the architecture that most researchers use to build latency-sensitive Internet of Things (IoT) applications. By placing resource-constrained fog devices near the network’s edge, fog computing design delivers less delay than the cloud computing paradigm. Fog nodes use the available resources to process the incoming data, which lowers the data amount that needs to be transferred to the server of the cloud. A system contains fog devices with various levels of computing power. The best system performance is only possible when the appropriate sensor nodes are connected to the parent fog node. In this study, we introduce a cluster head selection algorithm for effective network resource utilization through application deployment in a fog-cloud environment for internet of things-based applications. With the introduction of fog computing, the processing is animatedly dispersed through the cloud layers and fog, enabling the deployment of an application’s modules closer to the foundation of fog-layer devices. The method is general and may be used with various network topologies and a broad range of standardized IoT applications, regardless of load.Abstract
How to Cite
Downloads
Similar Articles
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Neeraj ., Anita Singhrova, Quantum Key Distribution-based Techniques in IoT , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Pattunnarajam, Janani G, A. Vijayaraj, Sathiya Priya S, Enhanced routing strategy of wireless sensor network based on fifth generation communication technology , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, Feature selection in HR analytics: A hybrid optimization approach with PSO and GSO , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.