Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.32Keywords:
Internet of Things, Cloud computing, Fog Computing, Fog-Cloud Paradigm, Cluster head selection algorithm, Network utilization, Energy consumptionDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Fog computing is the architecture that most researchers use to build latency-sensitive Internet of Things (IoT) applications. By placing resource-constrained fog devices near the network’s edge, fog computing design delivers less delay than the cloud computing paradigm. Fog nodes use the available resources to process the incoming data, which lowers the data amount that needs to be transferred to the server of the cloud. A system contains fog devices with various levels of computing power. The best system performance is only possible when the appropriate sensor nodes are connected to the parent fog node. In this study, we introduce a cluster head selection algorithm for effective network resource utilization through application deployment in a fog-cloud environment for internet of things-based applications. With the introduction of fog computing, the processing is animatedly dispersed through the cloud layers and fog, enabling the deployment of an application’s modules closer to the foundation of fog-layer devices. The method is general and may be used with various network topologies and a broad range of standardized IoT applications, regardless of load.Abstract
How to Cite
Downloads
Similar Articles
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V. Baby Deepa, R. Jeya, Dynamic resource allocation with otpimization techniques for qos in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Prince Williams, Nilesh M. Patil, Allanki S. Rao, Chandra M. V. S. Akana, K. Soujanya, Aakansha M. Steele, Transformative effects of connectivity technologies on urban infrastructure and services in smart cities , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rahat Yezdani, S. M. K. Quadri, A PPR-based energy-efficient VM consolidation in cloud computing , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.