Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.32Keywords:
Internet of Things, Cloud computing, Fog Computing, Fog-Cloud Paradigm, Cluster head selection algorithm, Network utilization, Energy consumptionDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Fog computing is the architecture that most researchers use to build latency-sensitive Internet of Things (IoT) applications. By placing resource-constrained fog devices near the network’s edge, fog computing design delivers less delay than the cloud computing paradigm. Fog nodes use the available resources to process the incoming data, which lowers the data amount that needs to be transferred to the server of the cloud. A system contains fog devices with various levels of computing power. The best system performance is only possible when the appropriate sensor nodes are connected to the parent fog node. In this study, we introduce a cluster head selection algorithm for effective network resource utilization through application deployment in a fog-cloud environment for internet of things-based applications. With the introduction of fog computing, the processing is animatedly dispersed through the cloud layers and fog, enabling the deployment of an application’s modules closer to the foundation of fog-layer devices. The method is general and may be used with various network topologies and a broad range of standardized IoT applications, regardless of load.Abstract
How to Cite
Downloads
Similar Articles
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ritu Jain, Ritesh Tiwari, Shailendra Kumar, Ajay Kumar Shukla, Manish Kumar, Awadhesh Kumar Shukla, Description of Medicinal Herb, Perfume Ginger: Hedychium spicatum (Zingiberales: Zingiberaceae) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Lavkush Pandey, Trilokinath, Convergence of the Method of False Position , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Bhoomika Singh, Defluoridation of Drinking Water in India , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Amarjeet Kumar, Navin Kumar, Hydrological Status and Primary Productivity in Rasalpura Pond in Saran District of Bihar , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Rattan Singh, Sushil Gupta, Anil Kumar, EFFECTS OF SOURCES, INFORMATION, COMMUNICATION AND KNOWLEDGE IN HIV/AIDS AWARENESS PROGRAMME IN PUNJAB. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- J. Helan Shali Margret, N. Amsaveni, Application of Lotka’s law in Indian cytokine publications: A scientometric study based on web of science during 1998 TO 2022 , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Gautam Nayak, Parthivkumar Patel, Developing speaking skills through task-based learning in English as a foreign language classroom , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Prof. (Dr) Chetan Trivedi, Rohal S. Raval, Uneasy lies the head that wears the crown of English chair: A critical reading of Netflix’s The Chair (2021) , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 14 15 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.