Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.32Keywords:
Internet of Things, Cloud computing, Fog Computing, Fog-Cloud Paradigm, Cluster head selection algorithm, Network utilization, Energy consumptionDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Fog computing is the architecture that most researchers use to build latency-sensitive Internet of Things (IoT) applications. By placing resource-constrained fog devices near the network’s edge, fog computing design delivers less delay than the cloud computing paradigm. Fog nodes use the available resources to process the incoming data, which lowers the data amount that needs to be transferred to the server of the cloud. A system contains fog devices with various levels of computing power. The best system performance is only possible when the appropriate sensor nodes are connected to the parent fog node. In this study, we introduce a cluster head selection algorithm for effective network resource utilization through application deployment in a fog-cloud environment for internet of things-based applications. With the introduction of fog computing, the processing is animatedly dispersed through the cloud layers and fog, enabling the deployment of an application’s modules closer to the foundation of fog-layer devices. The method is general and may be used with various network topologies and a broad range of standardized IoT applications, regardless of load.Abstract
How to Cite
Downloads
Similar Articles
- C. Mohan Raj, M. Sundaram , M. Anand, Automation of industrial machinerie , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- N.S.G. Ganesh, V Arulkumar, R. Lathamanju, Priscilla Joy , Energetic and highly reliable photovoltaic power source assisted water pump control system design using IoT , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Nivethra Selvaraj , Dr. R. Prathiba Devi, Eco-friendly natural dyes and their application on printing graphics , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sangeeta Modi, P Usha, Fault analysis in hybrid microgrid for developing a suitable protection scheme , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Pravin P. P, J. Arunshankar, Development of digital twin for PMDC motor control loop , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- N Archana, R Aravind Babu, Fault-tolerant reconfigurable second-life battery system using cascaded DC- DC converter , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.