A novel and an effective intrusion detection system using machine learning techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.40Keywords:
Intrusion, Security, Supervised, Neighbor, Attack, Rule Mining, Machine Learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Network environments become more and more diverse with the presence of many different network protocols, services, applications and so on. With this diversity, many different types of attacks appear and target at a computer or a network every day. A single type of intrusion detection systems (IDSs), which has its own advantages and disadvantages, seems to be insufficient to detect all the attacks. Since us don’t know which types of attacks are coming next, the primary difficulty lays on selecting of the best IDS at a certain time. In our scenario, we assume that each IDS has its own favorite types of attacks to detect. In this paper is investigated for intrusion detection system (IDS) and its performance has been evaluated on the normal and abnormal intrusion datasets (KDDCUP99). New technique of k-NN algorithm using NA (Network Anomaly) rules for intrusion detection system is experimented. The research work compares accuracy, detection rate, false alarm rate and accuracy of other attacks under different proportion of normal information. Comparison between Naive Bayes classifier, SVM and NA-kNN for same training data set and testing data set has carried out. Experimental results show that for Probe, U2R, and R2L, NA-kNN gives better result. Overall correct count to detect correct attacks is larger in NA-kNN than other classifier algorithms.Abstract
How to Cite
Downloads
Similar Articles
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Bajeesh Balakrishnan, Swetha A. Parivara, E-HRM: Learning approaches, applications and the role of artificial intelligence , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper