A novel approach for metrics-based software defect prediction using genetic algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.39Keywords:
Rule mining, Defect, Genetic, software metrics, Prediction.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Software defect prediction is an important issue in the process of software development and maintenance, which is related to the overall success or failure of software. This is because early software failure prediction can improve software quality, reliability and efficiency, and reduce software cost. However, developing robust defect prediction models is a challenging task and many techniques have been proposed in the literature. In this paper, a software defect prediction model based on Novel Hybrid Genetics Software Defect Prediction (NHGSDP) is proposed. The supervised NHGSDP algorithm has been used to predict future software failures based on historical data. The evaluation process shows that the NHGSDP algorithm can be used effectively with high accuracy. The collected results show that the NHGSDP method has better performance.Abstract
How to Cite
Downloads
Similar Articles
- Allin Joe D, Thiyagarajan Krishnan, A modified sierpinski carpet antenna structure for multiband wireless applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sivakumar S, Rajasekaran Kondareddy, Kalyani Ayyemperumal, Building SaaS solutions using microsoft azure for achieving safe and secure tax related software , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Kapil ahuja, Ekta Rani, Soniya Devi, Exploring the dynamic landscape of environmental, social, and governance literature by using bibliometric analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Nitin Chandel, Lalsingh Khalsa, Sunil Prayagi, Vinod Varghese, Three‑phase‑lags thermoelastic infinite medium model with a spherical cavity via memory-dependent derivatives , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- A. Jabeen, A. R. M. Shanavas, Hazard regressive multipoint elitist spiral search optimization for resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kurubara Amaresh, M. S. Ganachari, Revanasiddappa Devarinti , Enhancing participant understanding and ethical considerations in clinical trial biospecimen research: Insights from an oncology setting in India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Tewoderos Legesse, Bekelech Sharew, Evaluation of white seeded sesame (Sesamum indicium L.) genotypes on growth and yield performance in Menit Goldya Woreda of West Omo Zone, SWE , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Subin M. Varghese, K. Aravinthan, A robust finger detection based sign language recognition using pattern recognition techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper

