An improved social media behavioral analysis using deep learning techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.38Keywords:
Deep Learning, Behaviour Analysis, ConvNet, Twitter, Positive tweets.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Most online users share their opinions and comments or give their valuable feedbacks on a variety of subjects. Public opinions and comments in social media have had great impact on social and political systems. This vast information can be reviewed and analyzed. As this online information grows in numbers it requires efficient processing. Thus, this information can be mined or analyzed effectively, making it a suitable candidate for data mining. Twitter’s micro blogging service has more than 250 million active users who post short messages about any topic. This vast information is a meaningful source of information regarding different aspects of. This paper proposes to mine and extract information from tweets called IBADL (Improved Behavioral Analysis using Deep Learning), the goal of the proposed technique is to mine information through the study of the tweets posted and conduct an analysis for drawing meaningful conclusions about the behavior of Twitter users.Abstract
How to Cite
Downloads
Similar Articles
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Suprabha Amit Kshatriya, Arvind R Yadav, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Selvi, T. S. Poornappriya, R. Balasubramani, Cloud computing research productivity and collaboration: A scientometric perspective , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Arvind K Shukla, Balaji V, Dharani R, M Ananthi, R Padmavathy, Romala V. Srinivas, Precision agriculture predictive modeling and sensor analysis for enhanced crop monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sawitri Devi, Raj Kumar, Unveiling scholarly insights: A bibliometric analysis of literature on gender bias at the workplace , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper