A bigdata analytics method for social media behavioral analysis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.37Keywords:
Social media, Big data, Twitter, Machine learning, Behavior analysis.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Twitter on web-based entertainment has become an important part of everyday life. This medium provides a list of current events in real time, most of which is difficult to understand, so it must be sorted to find useful information. Human biology, pharmacology, and experimental factors influence their behavior. Twitter tweets are a text store that can reflect human emotions and sentiments. Behavior Analytics (BA) is analyzing the behavior of individuals. BA can be used to filter useful information from tweets in healthcare and business applications. This paper presents the analysis of human behavior using Twitter data and a proposed Social Media Behavior Analysis Big Data Analytics (BASMBA) algorithm. The proposed algorithm uses several techniques in its preprocessing, feature selection, and classification of tweets using BIGDATA. Additionally, the accuracy of the algorithm is verified using the precision factor and recovery time.Abstract
How to Cite
Downloads
Similar Articles
- Minas M. Ali, Farah H. Alenezi, Nora F. Alfayyadh, Sara Y. Alhassoun, Rahaf M. Alanzi, Waseem Radwan, Conservative esthetic dentistry in Riyadh – Saudi Arabia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Vikas Jangra, Ambrish Pandey, Rajendra K. Anayath, Print consistency evaluation on uncoated paper using various digital print engines , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pragya Sharma, Anupriya Roy Srivastava, Cultural syncretism in Jhumpa Lahiri’s “Only Goodness” , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sabana Backer, Prasanth A.P, The influence of attitude on green-cosmetics purchase intention (pi) in central Kerala , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rajeshwar Mukherjee, Uday S. Dixit, Understanding cosmopsychism based on stochastic electrodynamics from the perspective of the Indian knowledge system , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Appu, How does brand equity influence the intent of e-bike users? Evidence from Chennai city , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shyamkant M. Khonde, Lata Suresh, Globalization and the evolution of labor: Navigating new frontiers in the global economy , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sivasankar G. A, Study of hybrid fuel injectors for aircraft engines , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sivasankar G A, T Thirunavukkarasu, A pragmatic study of organizational behaviour in aerospace companies , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Bayelign A. Zelalem, Ayalew Ali, BRICS and South African economic growth: Implications for Ethiopia, the new BRICS member , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 43 44 45 46 47 48 49 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rajeev P. R., K. Aravinthan, A novel approach for metrics-based software defect prediction using genetic algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Subin M. Varghese, K. Aravinthan, A robust finger detection based sign language recognition using pattern recognition techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper