A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.66Keywords:
Lung and Uterus cancer, Improved Particle Swarm Optimization (IPSO) with fuzzy possibilitic C-Means clustering (FPCM), ANFIS and Modified Chicken Swarm Optimization (MCSO), Generative Adversarial Network (GAN)Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Among all diseases affecting humanity, lung cancer has consistently stood out as one of the deadliest. It ranks among the most prevalent cancers and is a significant contributor to cancer-related deaths. The disease is often asymptomatic in its early stages, making early detection extremely challenging. To enhance the accuracy of cancer detection with minimal time, an effective hybrid feature selection and classification model is developed in this research for the efficient detection of detect lung and uterus cancers while leveraging big data. The Piecewise Adaptive Weighted Smoothing-based Multivariate Rosenthal Correlative Target Projection (PAWS-MRCTP) comprises three main processes namely data acquisition, preprocessing, and feature extraction. In the data acquisition phase, a large number of cancer patient data are collected from lung cancer and uterus cancer detection datasets. Subsequently, the collected patient data undergo preprocessing. The preprocessing stage comprises three key processes namely handling missing data, noisy data, and outlier data. Firstly, the proposed PAWS-MRCTP is employed to address missing values, utilizing the Piecewise Adaptive Constant Interpolation method based on multiple available data points. Noisy data are identified using Gower's weighted smoothing technique, which detects data containing random variations or errors. Then the Improved Particle Swarm Optimization (IPSO) with fuzzy possibility C-Means clustering (FPCM) is introduced for the data clustering. And then the hybrid feature selection is performed using the ANFIS and Modified Chicken Swarm Optimization (MCSO). Finally, the classification of uterine and lung tumors is done using the Generative Adversarial Network (GAN). Consequently, in the experiments, the proposed model beats existing classifiers in detection accuracy while consuming the least time.Abstract
How to Cite
Downloads
Similar Articles
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Chaitanya A. Kulkarni, Sayali Wadhokar, Om C. Wadhokar, Medhavi Joshi, Tushar Palekar, The intersection of cervical cancer treatment and physiotherapy: Current insights and future directions , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Chinnadurai U, A. Vinayagam, Energy efficient routing with cluster approach in wireless networks – A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Vijaya, D. Hema, Some properties of maximal product of two picture fuzzy soft graph , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper