A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.66Keywords:
Lung and Uterus cancer, Improved Particle Swarm Optimization (IPSO) with fuzzy possibilitic C-Means clustering (FPCM), ANFIS and Modified Chicken Swarm Optimization (MCSO), Generative Adversarial Network (GAN)Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Among all diseases affecting humanity, lung cancer has consistently stood out as one of the deadliest. It ranks among the most prevalent cancers and is a significant contributor to cancer-related deaths. The disease is often asymptomatic in its early stages, making early detection extremely challenging. To enhance the accuracy of cancer detection with minimal time, an effective hybrid feature selection and classification model is developed in this research for the efficient detection of detect lung and uterus cancers while leveraging big data. The Piecewise Adaptive Weighted Smoothing-based Multivariate Rosenthal Correlative Target Projection (PAWS-MRCTP) comprises three main processes namely data acquisition, preprocessing, and feature extraction. In the data acquisition phase, a large number of cancer patient data are collected from lung cancer and uterus cancer detection datasets. Subsequently, the collected patient data undergo preprocessing. The preprocessing stage comprises three key processes namely handling missing data, noisy data, and outlier data. Firstly, the proposed PAWS-MRCTP is employed to address missing values, utilizing the Piecewise Adaptive Constant Interpolation method based on multiple available data points. Noisy data are identified using Gower's weighted smoothing technique, which detects data containing random variations or errors. Then the Improved Particle Swarm Optimization (IPSO) with fuzzy possibility C-Means clustering (FPCM) is introduced for the data clustering. And then the hybrid feature selection is performed using the ANFIS and Modified Chicken Swarm Optimization (MCSO). Finally, the classification of uterine and lung tumors is done using the Generative Adversarial Network (GAN). Consequently, in the experiments, the proposed model beats existing classifiers in detection accuracy while consuming the least time.Abstract
How to Cite
Downloads
Similar Articles
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Venkatesh R, A study on women empowerment by enhancing saving capabilities – through self-help groups , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- A. Jabeen, A. R. M. Shanavas, Hazard regressive multipoint elitist spiral search optimization for resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Allin Joe D, Thiyagarajan Krishnan, A modified sierpinski carpet antenna structure for multiband wireless applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. Pattunnarajam, Janani G, A. Vijayaraj, Sathiya Priya S, Enhanced routing strategy of wireless sensor network based on fifth generation communication technology , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- ATANU BHATTACHARYYA, P. S. DATTA, ASIM BHAUMIK, SHASHIDHAR VIRAKTAMATH, MORSHED U. CHOWDHURY, RAJENDRA KUMAR ISAAC, TINY DEVICES- NANO - THE EMERGING WORLD TECHNOLOGY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper