Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.65Keywords:
Lung and uterus cancer detection, big data, preprocessing, Piecewise Adaptive Constant Interpolation method, Gower's weighted smoothing technique, Peirce's statistical test, feature selection, Multivariate Rosenthal correlative target feature projection techniqueDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cancer is the uncontrolled growth and spread of abnormal cells in the body. Early detection and prediction of cancer are crucial aspects of modern healthcare aimed at greatly improving the chances of survival for patients by reducing mortality rates and the number of people affected by this disease. Due to the large volume of data generated in the medical industry, accurate cancer detection is a challenging task. Many cancer classification systems using machine learning and deep learning models have been developed but accurate cancer detection with minimal time consumption remains a major challenging issue in the big data applications. To enhance the accuracy of cancer detection with minimal time, the Piecewise Adaptive Weighted Smoothing-based Multivariate Rosenthal Correlative Target Projection (PAWS-MRCTP) technique is introduced. This technique aims to detect lung and uterus cancers while leveraging big data. The proposed PAWS-MRCTP technique comprises three main processes namely data acquisition, preprocessing, and feature selection. In the data acquisition phase, a large number of cancer patient data are collected from lung cancer and uterus cancer detection datasets. Subsequently, the collected patient data undergo preprocessing. The preprocessing stage comprises three key processes namely handling missing data, noisy data, and outlier data. Firstly, the proposed PAWS-MRCTP is employed to address missing values, utilizing the Piecewise Adaptive Constant Interpolation method based on multiple available data points. Noisy data are identified using Gower's weighted smoothing technique, which detects data containing random variations or errors. Subsequently, outlier data are identified and removed by applying Peirce's statistical test. As a result, the pre-processed dataset is obtained resulting to minimize the time complexity. With the pre-processed dataset, the feature selection process is carried out to minimize the dimensionality of the large dataset. The proposed PAWS-MRCTP technique utilizes the Multivariate Rosenthal correlative target feature projection technique to identify the most relevant features. By selecting significant features, this approach enhances the accuracy of lung cancer and uterus cancer detection with minimal time consumption. Experimental assessment is conducted with different evaluation metrics such as cancer detection accuracy, precision, and cancer detection time and space complexity. The observed result shows the effectiveness of the proposed PAWS-MRCTP technique with higher accuracy with minimum time than the existing methods.Abstract
How to Cite
Downloads
Similar Articles
- Naveen Kumar, Vikram Delu, Tarsem Nain, Anil Kumar, Pooja, Arbind Acharya, Exploring the therapeutic implications of nanoparticles for liquid tumors: A comprehensive review with special emphasis on green synthesis techniques in the context of Dalton’s lymphoma , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Aditi Malik, Rishi Chaudhry, Mohit, Urvashi Suryavanshi, Mapping the landscape of political advertising research: A comprehensive bibliometric analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ravi Kumar P, C. Gowri Shankar, Optimizing power converters for enhanced electric vehicle propulsion: A novel research methodology , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Advancements in image quality assessment: a comparative study of image processing and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Anurag Tripathi, Distribution of Acetylcholinesterase in the Octavolateral Area of Heteropneustes fossilis , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Gomathi P, Deena Rose D, Sampath Kumar R, Sathya Priya M, Dinesh S, Ramarao M, Computer vision for unmanned aerial vehicles in agriculture: applications, challenges, and opportunities , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Anurag B. Gohain1, Devanand Mishra, Vithou U Mera, Content analysis of academic library website with special reference to the central universities in Northeast India , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kanwar D Singh, Rashmi Ashtt, Barriers to last mile connectivity: The role of crime in metro station accessibility , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ahmed Mustefa, Ethiopian Voluntary Resettlement Programme-Lesson to Learn , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 37 38 39 40 41 42 43 44 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper