Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.65Keywords:
Lung and uterus cancer detection, big data, preprocessing, Piecewise Adaptive Constant Interpolation method, Gower's weighted smoothing technique, Peirce's statistical test, feature selection, Multivariate Rosenthal correlative target feature projection techniqueDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cancer is the uncontrolled growth and spread of abnormal cells in the body. Early detection and prediction of cancer are crucial aspects of modern healthcare aimed at greatly improving the chances of survival for patients by reducing mortality rates and the number of people affected by this disease. Due to the large volume of data generated in the medical industry, accurate cancer detection is a challenging task. Many cancer classification systems using machine learning and deep learning models have been developed but accurate cancer detection with minimal time consumption remains a major challenging issue in the big data applications. To enhance the accuracy of cancer detection with minimal time, the Piecewise Adaptive Weighted Smoothing-based Multivariate Rosenthal Correlative Target Projection (PAWS-MRCTP) technique is introduced. This technique aims to detect lung and uterus cancers while leveraging big data. The proposed PAWS-MRCTP technique comprises three main processes namely data acquisition, preprocessing, and feature selection. In the data acquisition phase, a large number of cancer patient data are collected from lung cancer and uterus cancer detection datasets. Subsequently, the collected patient data undergo preprocessing. The preprocessing stage comprises three key processes namely handling missing data, noisy data, and outlier data. Firstly, the proposed PAWS-MRCTP is employed to address missing values, utilizing the Piecewise Adaptive Constant Interpolation method based on multiple available data points. Noisy data are identified using Gower's weighted smoothing technique, which detects data containing random variations or errors. Subsequently, outlier data are identified and removed by applying Peirce's statistical test. As a result, the pre-processed dataset is obtained resulting to minimize the time complexity. With the pre-processed dataset, the feature selection process is carried out to minimize the dimensionality of the large dataset. The proposed PAWS-MRCTP technique utilizes the Multivariate Rosenthal correlative target feature projection technique to identify the most relevant features. By selecting significant features, this approach enhances the accuracy of lung cancer and uterus cancer detection with minimal time consumption. Experimental assessment is conducted with different evaluation metrics such as cancer detection accuracy, precision, and cancer detection time and space complexity. The observed result shows the effectiveness of the proposed PAWS-MRCTP technique with higher accuracy with minimum time than the existing methods.Abstract
How to Cite
Downloads
Similar Articles
- Juhi Chaudhary, Dimple Raina, Pallavi Rawat, Vidya Chauhan, Neha Chauhan, GC-MS Profiling and Analysis of Bioprotective Properties of Terminalia chebula against Non-Fermenting Gram-Negative Bacteria Isolated from Tertiary Care Hospital , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Rahul, Naveen Sharma, Thermosolutal Instability of Couple Stress Rivlin Ericksen Ferromagnetic Fluid with Rotation, Magnetic and Variable Gravity Field in Porous Medium , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- K. Akila, Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Poonam Sharma, Anindita S.Chaudhuri, Subhash Anand, Ankur Srivastava, Ashutosh Mohanty , Pravin Kokne, Measuring the relationship of land use land cover, normalized difference vegetation index and land surface temperature in influencing the urban microclimate in northeast Delhi, India , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sabana Backer, Prasanth A.P, The influence of attitude on green-cosmetics purchase intention (pi) in central Kerala , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- REKHA KHANDAL, SHILPENDRA KOUR, RASHMI TRIPATHI, ANTIBACTERIAL ACTIVITY OF PHYTO-CHEMICALS OBTAINED FROM LEAFEXTRACTS OF SOME MEDICINAL PLANTS ON PATHOGENS OF SEMI-ARID SOIL , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Priyanka, Sandeep, Tarang Shrivastava, Sandeep Kumar, Vinay Viratia, Kinesio Taping Along with PNF Stretching Improved Ankle Dorsiflexion in Children with Spastic Diplegic Cerebral Palsy , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rajesh Rayal, Riya Malik, Sanjay Madan, Anju Thapliyal, Drifting-Density and Diversity of Aquatic Mites in the Spring- Fed Stream Heval from Garhwal Himalaya , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- NITHYA R, shruthi D, Sindhuja S, Sneha S, Challenges encountered by health care professionals in monitoring adverse events due to medical devices: A review , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 29 30 31 32 33 34 35 36 37 38 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper