Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.65Keywords:
Lung and uterus cancer detection, big data, preprocessing, Piecewise Adaptive Constant Interpolation method, Gower's weighted smoothing technique, Peirce's statistical test, feature selection, Multivariate Rosenthal correlative target feature projection techniqueDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cancer is the uncontrolled growth and spread of abnormal cells in the body. Early detection and prediction of cancer are crucial aspects of modern healthcare aimed at greatly improving the chances of survival for patients by reducing mortality rates and the number of people affected by this disease. Due to the large volume of data generated in the medical industry, accurate cancer detection is a challenging task. Many cancer classification systems using machine learning and deep learning models have been developed but accurate cancer detection with minimal time consumption remains a major challenging issue in the big data applications. To enhance the accuracy of cancer detection with minimal time, the Piecewise Adaptive Weighted Smoothing-based Multivariate Rosenthal Correlative Target Projection (PAWS-MRCTP) technique is introduced. This technique aims to detect lung and uterus cancers while leveraging big data. The proposed PAWS-MRCTP technique comprises three main processes namely data acquisition, preprocessing, and feature selection. In the data acquisition phase, a large number of cancer patient data are collected from lung cancer and uterus cancer detection datasets. Subsequently, the collected patient data undergo preprocessing. The preprocessing stage comprises three key processes namely handling missing data, noisy data, and outlier data. Firstly, the proposed PAWS-MRCTP is employed to address missing values, utilizing the Piecewise Adaptive Constant Interpolation method based on multiple available data points. Noisy data are identified using Gower's weighted smoothing technique, which detects data containing random variations or errors. Subsequently, outlier data are identified and removed by applying Peirce's statistical test. As a result, the pre-processed dataset is obtained resulting to minimize the time complexity. With the pre-processed dataset, the feature selection process is carried out to minimize the dimensionality of the large dataset. The proposed PAWS-MRCTP technique utilizes the Multivariate Rosenthal correlative target feature projection technique to identify the most relevant features. By selecting significant features, this approach enhances the accuracy of lung cancer and uterus cancer detection with minimal time consumption. Experimental assessment is conducted with different evaluation metrics such as cancer detection accuracy, precision, and cancer detection time and space complexity. The observed result shows the effectiveness of the proposed PAWS-MRCTP technique with higher accuracy with minimum time than the existing methods.Abstract
How to Cite
Downloads
Similar Articles
- Ashoke D. Maliki, Taiwo A. Muritala, Saji George, Frank A. Ogedengbe, Impact of project financiers’ strategies on de-risking infrastructural projects: A conceptual review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. R. Jasmine Begum, M. Parveen, S. Latha, IoT based home automation with energy management , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- J. Helan Shali Margret, N. Amsaveni, Application of Lotka’s law in Indian cytokine publications: A scientometric study based on web of science during 1998 TO 2022 , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Amresh Kumar Singh, Manjit Singh Chhetri, Pushyamitra Mishra, Toughness and Ductile Brittle Transition Temperature of Different Mineral Filler Reinforced TPOs Composites , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Finney D. Shadrach, Harsshini S, Darshini R, Grapevine leaf species and disease detection using DNN , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rakhimov S. Bekturdievich, Grave structures of the population of the lower part of the Amudarya in the islamic period (On the example of archeological monuments of IX-XIII centuries) , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Rajashree Sunder Raj, Sayar Ahmad Sheikh, Health status of women in slums: A comprehensive study in Raichur District Karnataka, India , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- L. K. Mishra, A. P. Singh, AGE AND CREATIVITY: EFFECT OF CHRONOLOGICAL AGE ON MANAGER’S CREATIVITY , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Shashank Suman, Prashant Kumar, Seasonal Estimation in Primary Productivity of Akilpur Lake in Dighwara, Saran (Bihar) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 24 25 26 27 28 29 30 31 32 33 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper