Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.62Keywords:
Wireless Body Area Networks, Cloud, Brouwer Fixed Point, Blowfish Nash Equilibrium, Stochastic Neural NetworkDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The trending technology in Wireless Sensor Networks (WSN) is to improve the healthcare system by using Wireless Body Area Networks (WBANs). Implantable Sensor and wearable sensors are inexpensive technology, which are designed to track the body signals and to get intermediate physical activity status. This is considered as an unremarkable choice for continuous health monitoring. In recent years, various routing protocols had been designed to provide reliable data transmission in WBAN. However, many of these protocols are not focused more on security aspects such as data confidentiality and data integrity in medical data transmission. And also, the energy efficient communication methods have significantly vulnerable to various attacks due to the lack of computationally efficient authentication and authorization process. To rectify the drawbacks of existing system a new approach Brower Blowfish Nash-secured Stochastic Neural Network-based (Brower BNSNN) is proposed for medical data transmission through WBAN in cloud environment. The Brower BNSNN method is designed to perform data collection, compression, encryption/decryption and anomaly detection for medical WBAN disease diagnosis in cloud environment. First, distinct numbers of sensor nodes that are attached in the bodies of multiple patients collected for further validation and anomaly detection. Secondly Fixed Point-based compression is performed in the cloud by the cloud user. The sensor nodes compress their sensed data into WBAN messages and sent to cloud server for further processing and from this data confidentiality and data integrity are ensured. Third step is Blowfish Nash Equilibrium-based encryption and decryption is applied to the compressed data to ensure security during the communication between devices or cloud server. Finally, Stochastic Neural Network-based anomaly detection model is designed to perform anomaly detection via authorization process. The designed network performs two-stage authorization such as validating sub-keys and checking kernel process attacks and network logs attacks. Simulations are performed to measure and validate the performance metrics in terms of data confidentiality, data integrity, disease diagnosis accuracy, authentication, in Health Monitoring System.Abstract
How to Cite
Downloads
Similar Articles
- A. Rukmani, C. Jayanthi, Trust and security in wireless sensor networks: A literature review of approaches for malicious node detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Kavitha V, Panneer Arokiaraj S., RPL-eSOA: Enhancing IoT network sustainability with RPL and enhanced sandpiper optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing cloud data security: User-centric approaches and advanced mechanisms , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper