An optimal fuzzy inventory model for rice farming using lagrangean method
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.10Keywords:
Erratic, Irrigation, Paddy Field, Unreliable.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Rice is the staple diet for millions of people in Asia and around the globe. Nowadays, Farmers are facing many challenges in the field because the soil’s fertility is declining, it is growing harder for farmers to cultivate their land. Numerous elements, such as soil erosion, salinity, Poor Nutrient Management and temperature variations, have an impact on soil fertility. Rainwater runs swiftly across upland soils, making it difficult for farmers to hold on to the moisture in the soil. Now, it is time to rethink the cropping patterns based on agroclimatic zones. India is the leading producer of Rice crops. It is one of the major food crops that provide nourishment for millions of people every day. This paper aims to investigate the fuzzy production-related factors for one acre of rice farming. Various costs are fuzzified as trapezoidal fuzzy numbers and deffuzzified by using the beta distribution method. This proposed model is to determine the optimal solution using lagrangean method. A numerical example is concluded.Abstract
How to Cite
Downloads
Similar Articles
- G. Deena, K. Raja, M. Azhagiri, W.A. Breen, S. Prema, Application of support vector classifier for mango leaf disease classification , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V. K. Goswami, Pigeonpea (Cajanus cajan L.) growth and yield with varying spacing and fertilizer , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- B.V.Thacker, G.P. Vadodaria, G.V. Priyadarshi, M.H. Trivedi, Biopolymer-based fly ash-activated zeolite for the removal of chromium from acid mine drainage , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- N.S.G. Ganesh, V Arulkumar, R. Lathamanju, Priscilla Joy , Energetic and highly reliable photovoltaic power source assisted water pump control system design using IoT , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. Pattunnarajam, Janani G, A. Vijayaraj, Sathiya Priya S, Enhanced routing strategy of wireless sensor network based on fifth generation communication technology , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Isreal Zewide, A coffee biochar-mineral NP interaction: Boon for soil health , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Shiny Bridgette I, Rexlin Jeyakumari S, Fuzzy inventory model with warehouse limits and carbon emission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper

