An optimized cardiac risk levels classifier based on GMM with min- max model from photoplethysmography signals
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.70Keywords:
Gaussian mixture model, Min-max decision model, Cardiovascular disease, Photoplethysmography, Singular value decomposition.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As per a latest study, coronary artery disease and hemorrhagic stroke are the predominant factors contributing to over 80% of cardiovascular diseases (CVDs). To reduce the mortality rate due to CVDs, researches are proposing the techniques for early detection of these CVDs. For the preliminary investigation on cardiovascular disease Photoplethysmography (PPG) can be used. Using PPG signals, it is possible to infer the risk levels like CVD with low risk, CVD with medium risk and respiratory disorder. To classify the risk levels of CVD, a model incorporating Gaussian mixture model (GMM) classifier with min-max decision model has been implemented. The proposed model resulted in better performance than existing classifiers like Logistic regression-GMM (LR-GMM), Detrend fluctuation analysis (DFA) and Cuckoo search algorithm (CSA) using min-max model. Based on the results GMM reflects a peak 95.9% classification accuracy with minimal false alarm of 7.1% and 0.99% miss classification when compared to other post classifiers.Abstract
How to Cite
Downloads
Similar Articles
- P. Vinnarasi, K. Menaka, Advanced hybrid feature selection techniques for analyzing the relationship between 25-OHD and TSH , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Amanda Q. Okronipa, Jones Y. Nyame, Exploring the effect of perceived empathy and social presence on the intention to use AI in higher education , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- A. Tamilmani, K. Muthuramalingam, An enhanced support vector machine bbased multiclass classification method for crop prediction , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Amanda Quist Okronipa, Isaac Asampana, Jones Yeboah Nyame, Exploring e-learning system loyalty: The role of system quality and satisfaction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, A comparative analysis of virtual machines and containers using queuing models , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Deepika S, Jaisankar N, A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 22 23 24 25 26 27 28 > >>
You may also start an advanced similarity search for this article.

