Machine learning approaches for predicting species interactions in dynamic ecosystems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.69Keywords:
Machine learning, Species interactions, Dynamic ecosystems, Predictive modeling, Comparative analysis, Performance evaluation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper explores the application of machine learning (ML) techniques in predicting species interactions within dynamic ecosystems. Using a multi-faceted approach, we investigate the effectiveness of various ML algorithms in analyzing species interaction strengths through an example dataset. Visualizations, including bar, line, and pie charts, depict the distribution and patterns of species interactions, providing valuable insights into ecological dynamics. Additionally, a comparative analysis examines the data requirements and characteristics of four ML approaches: Generalized Linear Models (GLM), Classification and Regression Trees (CART), Artificial Neural Networks (ANN), and Evolutionary Algorithms (EA). By synthesizing information from previous studies, we elucidate the strengths and limitations of each ML approach in predicting species interactions. Furthermore, a performance evaluation of these approaches highlights their predictive capabilities across various metrics, including accuracy, precision, recall, and F1 score. Our research methodology provides a comprehensive understanding of the application of ML techniques in ecological research, laying the groundwork for future studies aiming to predict species interactions and advance our understanding of dynamic ecosystems.Abstract
How to Cite
Downloads
Similar Articles
- Virendra Chavda, Bhavesh J. Parmar, Urvi Zalavadia, Assessment of Omni channel retailing characteristics and its effect on consumer buying intention , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Nagendra Kumar Yadav, PESTICIDE TOXICITY AND BIOCHEMICAL CHANGES IN FRESHWATER FISHES , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Dharmendra Kumar, Equabal Jawed, SEASONAL ZOOPLANKTON COMMUNITY STRUCTURE OF SHATIYA WETLAND IN GOPALGANJ DISTRICT OF BIHAR , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Dimpal Kumari, SOME PLANT EXTRACTS AGAINST ANTHRACNOSE INFECTION IN PAPAYA (Carica papaya) , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Alpana Parmar, Ashok Kumar, Arvind Kumar Sharma, LENGTH-WEIGHT RELATIONSHIP OF FRESH WATER FISH LABEO BATA (HAM.) FROM RIVER GHAGHRA , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Vibhu Tripathi, India’s transformative journey: A decade and a half of growth, innovation, and inclusive progress , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Aakanksha Laiker, Promil Pande, Contribution of policy and regulations to enhance Transparency and Traceability in the Garment Industry , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Appu A, Does shopping values influence users behavioral intentions? Empirical evidence from Chennai malls , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Afroz Alam, Krishna Kumar Rawat, Praveen Kumar Verma, Sonu Yadav, Bryodiversity of Eastern Ghats (India) , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
<< < 34 35 36 37 38 39 40 41 42 43 > >>
You may also start an advanced similarity search for this article.