MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.30Keywords:
Sentiment analysis, Machine learning, Hermit crab optimization, Covid-19, Feature selection, Evolutionary algorithms.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The COVID-19 pandemic has led to a flood of data on Twitter, making it crucial to analyze public opinion. However, the large amount of data is challenging to manage. This paper presents the multi-objective hermit crab optimization algorithm (MOHCOA) to tackle this problem by improving the accuracy of sentiment analysis, selecting the best features, and reducing computing time. Inspired by how hermit crabs choose their shells, MOHCOA balances exploring new features and using known ones, which helps in better sentiment classification while cutting down on unnecessary data and processing time. Compared to other methods, MOHCOA is more efficient in selecting features and improving model accuracy. For the bag of words (BoW) set, MOHCOA narrowed features down to 2005, and for the BoW + COVID-19 keywords set, it chose 2278 features. When used with a random forest model, MOHCOA achieved a precision of 0.84, recall of 0.69, F1-score of 0.75, and accuracy of 0.83. This shows that MOHCOA is effective in managing large data sets, making it a useful tool for analyzing text and public sentiment during events like the COVID-19 pandemic.Abstract
How to Cite
Downloads
Similar Articles
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, The role of technology in implementing effective education for children with learning difficulties , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.