Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.29Keywords:
Machine learning algorithms, Diabetes mellitus, Helsinki declaration, Al-Biruni earth radius, Dipper-throated optimization algorithm, Pelican optimization algorithm.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Machine learning algorithms are employed in public health to forecast or diagnose chronic epidemiological illnesses like diabetes, which have global rates of transmission and infection. Machine learning technology may be applied to diagnostic, prognostic, and evaluation methods for a number of illnesses, including diabetes. This work presents a novel approach based on a novel metaheuristic optimization algorithm to improve diabetes categorization. 738 records were included in the final analysis of the main data, which was acquired in 2013 in accordance with the security protocols specified in the Declaration of Helsinki. This approach suggests a novel feature selection technique based on DBERDTO (Douche Optimization technique) and the dynamic Al-Biruni earth radius. A random forest classifier was used to categorize the chosen features, and the suggested DBERDTO was utilized to optimize the parameters. In this work, we investigate hyperparameter tuning for improved diabetes case prediction using the Pelican Optimization Algorithm (POA) in conjunction with the XGBoost machine learning technique. To prove the effectiveness and superiority of the suggested approach, it is tested against the most recent machine learning models and optimization techniques. The method's overall accuracy for classifying diabetes was 99.65%. These test results attest to the suggested method's superiority over alternative categorization and optimization techniques.Abstract
How to Cite
Downloads
Similar Articles
- P. L. Parmar, P. M. George, Study and optimization of process parameters for deformation machining stretching mode , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- G. Tripathi, Impact of Nanomaterials on Earthwoms : A New Threat to Megadrili Resources , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Amol Garge, Monika Tripathi, Navigating the virtual frontier: Best practices for ERP implementation in the digital age , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Akram M. Elias, Rayan S. Hamed, Jiyar M. Naji, The impact of bone substitute combined with blood cell progenerators on the healing of surgical bony defects , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Abhishek K Pandey, Amrita Sahu, Ajay K Harit, Manoj Singh, Nutritional composition of the wild variety of edible vegetables consumed by the tribal community of Raipur, Chhattisgarh, India , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Chinnadurai U, A. Vinayagam, Energy efficient routing with cluster approach in wireless networks – A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Kumari Sandhiya, Ashwani Pandey, Ruchi Sharma, Kaneez Fatima, Rukhsar Parveen, Naveen Gaurav, Assessment of Phytochemical and Antimicrobial Activity of Withania somnifera (Ashwagandha) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- K. R. R. Prakash, Kishore Kunal, Designing information systems for business administration through human and computer interaction , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper