Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.28Keywords:
Base reactions, Finite Element Analysis, Soil structure analysis, , Concrete footing steps, Stub angleDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Transmission line Towers are structures commonly used to support the phase conductors and shield wires of a transmission line. The present work describes the analysis of superstructure and substructure of a 220kV transmission line tower. The tower is a self supporting three dimensional type and designed for a height of 33.25 meters which is usual height of supporting conductors to transmit power one point to another in Andhra Pradesh. Super Structure of the transmission line tower has been analysed considering wind loads as per codal provisions IS 802:2002. Reactions obtained from the results in each leg of a transmission line tower at base have been considered as forces for the Finite Element analysis of substructure system. The analysis has been carried out using Ansys Workbench by considering Finite Element Analysis concept with Solid 65 as element for concrete foot steps and truss element for steel sections. Various parameters like deformation & Stresses are observed in the stub angle section and foundation system with five footing steps to study the compare the results between different foot steps of a foundation model. The numerical analysis such as finite element method has enabled the prediction of stresses of foundation of Transmission line Tower.Abstract
How to Cite
Downloads
Similar Articles
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Tewoderos Legesse, Bekelech Sharew, Evaluation of white seeded sesame (Sesamum indicium L.) genotypes on growth and yield performance in Menit Goldya Woreda of West Omo Zone, SWE , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Bayelign A. Zelalem, Ayalew Ali, BRICS and South African economic growth: Implications for Ethiopia, the new BRICS member , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Jayshree Mehta, Pranjal Bhatt, Vikas Raval, Skill development in India: Challenges, current, and future perspectives , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- J. Pavithra, Status of investment in startup in India – An analysis , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Nalini. S, Ritha. W, Sasitharan Nagapan, Optimal Inventory Policies for Perishable Products Under Demand and Lead Time Uncertainty , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Dimpal Kumari, SOME PLANT EXTRACTS AGAINST ANTHRACNOSE INFECTION IN PAPAYA (Carica papaya) , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Pratibha Baluni, Priya Kathait, Pankaj Bahuguna, C. B. Kotnala, Rajesh Rayal, Analysis of Riparian Vegetation Diversity at Khanda Gad Stream, Garhwal Himalaya, Uttarakhand, India , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Prince Williams, Nilesh M. Patil, Allanki S. Rao, Chandra M. V. S. Akana, K. Soujanya, Aakansha M. Steele, Transformative effects of connectivity technologies on urban infrastructure and services in smart cities , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 17 18 19 20 21 22 23 24 25 26 > >>
You may also start an advanced similarity search for this article.

