Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.28Keywords:
Base reactions, Finite Element Analysis, Soil structure analysis, , Concrete footing steps, Stub angleDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Transmission line Towers are structures commonly used to support the phase conductors and shield wires of a transmission line. The present work describes the analysis of superstructure and substructure of a 220kV transmission line tower. The tower is a self supporting three dimensional type and designed for a height of 33.25 meters which is usual height of supporting conductors to transmit power one point to another in Andhra Pradesh. Super Structure of the transmission line tower has been analysed considering wind loads as per codal provisions IS 802:2002. Reactions obtained from the results in each leg of a transmission line tower at base have been considered as forces for the Finite Element analysis of substructure system. The analysis has been carried out using Ansys Workbench by considering Finite Element Analysis concept with Solid 65 as element for concrete foot steps and truss element for steel sections. Various parameters like deformation & Stresses are observed in the stub angle section and foundation system with five footing steps to study the compare the results between different foot steps of a foundation model. The numerical analysis such as finite element method has enabled the prediction of stresses of foundation of Transmission line Tower.Abstract
How to Cite
Downloads
Similar Articles
- Indrani Sengupta, Merilyn Gomes, Unveiling the divide: Analyzing critical thinking skills in literature and commerce students , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, ESPoW: Efficient and secured proof of ownership method to enable authentic deduplicated data access in public cloud storage , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Reena Lawrence, Reena Lawrence, Kapil Lawrence, A NEW GLYCOSIDE FROM THE BUDS OF CLOVE GROWN IN NORTH INDIAN PLAINS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Chirag Darji, Rajesh Chauhan, Views of undergraduates on Vikshit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- ALKA SRIVASTAVA, SANJAY KUMAR, STUDY OF NUTRIENT VALUE IN POST HARVESTED INFECTED ORANGE (CITRUS SINENSIS) FRUIT , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Joji John Panicker, Ancy Elezabath John, Nair Anup Chandrasekharan, A tapestry of tradition: Revitalization of Indian Heritage and Folk Art , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Ruchira P Dudhrejiya, A critical analysis of power dynamics in Vijay Tendulkar's theatrical tapestry , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Vijay Sharma, Nishu, Anshu Malhotra, An encryption and decryption of phonetic alphabets using signed graphs , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Vikas Yadav, Parul Nangia, Effect of Bisphenol-A Exposure on Activity of Antioxidant Enzymes in Channa punctatus and Alleviation with Vitamin C , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
<< < 14 15 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.