Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.28Keywords:
Base reactions, Finite Element Analysis, Soil structure analysis, , Concrete footing steps, Stub angleDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Transmission line Towers are structures commonly used to support the phase conductors and shield wires of a transmission line. The present work describes the analysis of superstructure and substructure of a 220kV transmission line tower. The tower is a self supporting three dimensional type and designed for a height of 33.25 meters which is usual height of supporting conductors to transmit power one point to another in Andhra Pradesh. Super Structure of the transmission line tower has been analysed considering wind loads as per codal provisions IS 802:2002. Reactions obtained from the results in each leg of a transmission line tower at base have been considered as forces for the Finite Element analysis of substructure system. The analysis has been carried out using Ansys Workbench by considering Finite Element Analysis concept with Solid 65 as element for concrete foot steps and truss element for steel sections. Various parameters like deformation & Stresses are observed in the stub angle section and foundation system with five footing steps to study the compare the results between different foot steps of a foundation model. The numerical analysis such as finite element method has enabled the prediction of stresses of foundation of Transmission line Tower.Abstract
How to Cite
Downloads
Similar Articles
- J. B. BHEDA, Comparative study of classical oratory traditions in East and West , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Rajeshwari D, C. Victoria Priscilla, An optimized real-time human detected keyframe extraction algorithm (HDKFE) based on faster R-CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Archana Bansal, Management of Crop-Residue to Control Environmental Hazards , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rasheedha A, Santhosh B, Archana N, Sandhiya A, Foot sens - foot pressure monitoring systems , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- L. K. Mishra, A. P. Singh, AGE AND CREATIVITY: EFFECT OF CHRONOLOGICAL AGE ON MANAGER’S CREATIVITY , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Archana Dhamotharan, Kanthalakshmi Srinivasan, Analog Circuits Based Fault Diagnosis using ANN and SVM , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Poonam Sharma, Anindita S.Chaudhuri, Subhash Anand, Ankur Srivastava, Ashutosh Mohanty , Pravin Kokne, Measuring the relationship of land use land cover, normalized difference vegetation index and land surface temperature in influencing the urban microclimate in northeast Delhi, India , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Veena Pande, Manish Pande, MOLECULAR DIVERSITY OF ECTOMYCORRHIZAL FUNGI OF CENTRAL HIMALAYA OF INDIA: AN IMPORTANT COMPONENT OF FOREST ECOSYSTEM , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.